APPENDIX V

RF-2 PERFORMANCE DEMONSTRATION TEST PLAN AND REPORT

FOR

SIEMENS INDUSTRY, INC.

PARKER REACTIVATION FACILITY

PARKER, ARIZONA

Revision 1 April 2012

RF-2 Performance Demonstration Test Plan

PLEASE SEE THE ATTACHED FLASH DRIVE WHICH CONTAINS ATTACHMENTS A THROUGH G

CARBON REACTIVATION FURNACE PERFORMANCE DEMONSTRATION TEST PLAN

PREPARED FOR:

WESTATES CARBON - ARIZONA, INC. 2523 MUTAHAR STREET PARKER, ARIZONA 85344

Revision: 0 May, 2003 Focus Project No. 010111

PREPARED BY:

FOCUS ENVIRONMENTAL, INC 9050 EXECUTIVE PARK DRIVE., SUITE A202 KNOXVILLE, TENNESSEE 37923 (865) 694-7517

TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONS

1.0	INTRODUC	CTION	8
	1.1 FACILI	TY AND BACKGROUND INFORMATION	8
	1.2 TEST F	PLAN PURPOSE AND ORGANIZATION	9
	1.3 PROCESS OVERVIEW		10
	1.4 TEST C	DBJECTIVES AND APPROACH	10
	1.5 TEST P	PROTOCOL SUMMARY	12
	1.5.1	Test Condition 1 ("Worst-Case" Operations)	12
	1.6 DEVEL	OPMENT OF PERMIT LIMITS	13
		PLAN DEVELOPMENT AND CONDUCT OF THE PRINCE DEMONSTRATION TEST	14
2.0	FEED STR	EAM DESCRIPTION	15
	2.1 FEED S	STREAM CHARACTERISTICS	15
	2.1.1	Spent Activated Carbon	15
	2.1.2	Fuels	
	2.1.3	Other Feed Streams	16
	2.2 FEED STREAM MANAGEMENT		16
	2.2.1	Storage	16
	2.2.2	Blending	17
3.0	ENGINEERING DESCRIPTION		18
	3.1 THERM	MAL TREATMENT SYSTEM	19
	3.1.1	Type, Manufacturer's Name and Model Number	19
	3.1.2	System Capacity	
	3.1.3	Thermal Treatment and Combustion Chamber(s)	19
	3.1.4	Residence Time Determination	21
	3.2 BURNER AND FEED SYSTEMS		21
	3.2.1	Burner Description	21
	3.2.2	Spent Activated Carbon Feed System	21
	3.2.3	Auxiliary Fuel System	21
	3.2.4	Combustion Air	21
	3.3 REACTIVATED CARBON HANDLING SYSTEM		22
	3.4 AIR POLLUTION CONTROL (APC) SYSTEM		22
	3.4.1	Quench/Venturi Scrubber	22
	3.4.2	Packed Bed Scrubber	23
	3.4.3	Wet Electrostatic Precipitator	23

	3.4.4	ID Fan	24
	3.4.5	Stack	24
	3.5 PROCESS MONITORING, CONTROL, AND OPERATION		
	3.5.1	Process Continuous Monitoring System (CMS)	25
	3.5.2	Continuous Emissions Monitoring System (CEMS)	28
	3.5.3	Safety and Automatic Waste Feed Cutoffs	28
	3.6 PROCEDURES TO RAPIDLY STOP WASTE FEEDS AND CONTROL EMISSIONS		
	3.6.1	Rapidly Stopping Spent Activated Carbon Feeds	
	3.6.2	Shutting Down the System	
	3.6.3	Controlling Emissions During Equipment Malfunctions	
	3.6.4	Emergency Safety Vent Operations	
4.0	TEST DES	IGN AND PROTOCOL	31
	4.1 REGUL	ATORY REQUIREMENTS	31
	4.1.1	40 CFR 60 Subpart EEE CAA Requirements	31
	4.1.2	Regulatory Policy Requirements	33
	4.2 TEST OBJECTIVES AND APPROACH		33
	4.3 TEST PROTOCOL		34
	4.3.1	Test Condition 1 ("Worst-Case" Operations)	34
	4.4 FEED N	MATERIAL CHARACTERISTICS	35
	4.4.1	Description and Composition of Spent Activated Carbon	35
	4.4.2	Expected Constituent Levels in Natural Gas, Process Air, & Other Feed Streams	35
	4.4.3	POHC Selection Rationale	
	4.4.4	Feed Material Specifications for the Test	37
	4.4.5	POHC, Organic Surrogate, and Metal Spiking	
	4.5 OPERATING CONDITIONS		41
	4.5.1	System Operation to Achieve Steady State Conditions	41
5.0	SAMPLING	G, ANALYSIS, AND MONITORING PROCEDURES	43
	5.1 SAMPLING LOCATIONS AND PROCEDURES		
	5.1.1	Spent Activated Carbon Feed	43
	5.1.2	Spiking Materials	43
	5.1.3	•	
	5.1.4		
	5.2 ANALYTICAL PROCEDURES		48
	5.3 MONITORING PROCEDURES		
	5.4 QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES		

	5.5 EMISSI	ON VALUES FOR USE IN RISK ASSESSMENTS	48
6.0	TEST SCH	EDULE	50
	6.1 PLANNED TEST DATE		
	6.2 DURATION OF EACH TEST		50
	6.3 QUANTITY OF SPENT CARBON TO BE REACTIVATED		
	6.4 DETAILED SCHEDULE OF PLANNED TEST ACTIVITIES		51
	6.5 PRELIN	//INARY TESTING	51
7.0	OPERATIN	IG PERMIT OBJECTIVES	52
	7.1 CONTROL PARAMETERS		52
	7.2 DEVEL	OPMENT OF PERMIT LIMITS	53
	7.2.1	Group A1 Parameters	
	7.2.2	Group A2 Parameters	
	7.2.3	Group B Parameters	56
	7.2.4	Group C Parameters	58
	7.2.5	Extrapolation of Metals Feed Rate Limits	58
8.0	TEST REP	ORT	61
	8.1 REGULATORY COMPLIANCE DETERMINATIONS		61
	8.1.1	Destruction and Removal Efficiency for the Designated POHCs.	61
	8.1.2	Particulate Matter Emission Concentration	
	8.1.3	Metal Emission Concentrations	
	8.1.4	System Removal Efficiency for Specific Metal Groups	
	8.1.5	Hydrogen Chloride and Chlorine Emission Concentration	
	8.1.6	Polychlorinated Dibenzo-p-Dioxin and Polychlorinated Dibenzofuran Emission Concentration	62
	8.1.7	Carbon Monoxide Emission Concentration	
	8.1.8	Total Hydrocarbon Emission Concentration	
	8.2 OTHER STACK GAS EMISSION DETERMINATIONS		
	8.3 FEED AND EFFLUENT DETERMINATIONS		63
	8.4 PROCESS DATA		64
	8.5 REPORTING OF INTERMEDIATE RESULTS		65
	8.5.1	Daily Process Data	
	8.5.2	Unfavorable Performance Demonstration Test Results	65
	8.5.3	Modification of Planned Performance Test Operating Conditions	65
0.0	D.A.T		
9.0	DATA IN LI	EU OF TESTING	66

ATTACHMENTS

ATTACHMENT A – SAMPLING PROCEDURES

ATTACHMENT B - ANALYTICAL PROCEDURES

ATTACHMENT C – QUALITY ASSURANCE PROJECT PLAN

ATTACHMENT D - CALCULATIONS

ATTACHMENT E - PROCESS ENGINEERING INFORMATION

ATTACHMENT F – JUSTIFICATION FOR COMPLIANCE WITH CHLORINE FEED RATE

LIMITS BY USING TDS RESTRICTIONS

ATTACHMENT G - DATA IN LIEU OF TESTING

LIST OF TABLES

- 2-1 Spent Activated Carbon Characterization Summary
- 2-2 Spent Activated Carbon Organic Constituent Data Summary
- 2-3 Characteristics of Natural Gas
- 3-1 Critical Process Instrumentation
- 3-2 Continuous Emissions Monitoring System Performance Specifications
- 3-3 Automatic Waste Feed Cutoff Parameters
- 4-1 Expected Test Feed Material Composition
- 4-2 Target Test Operating Conditions
- 5-1 Sample Collection Locations, Equipment, and Methods
- 5-2 Planned Analyses for Test Samples
- 5-3 Summary of Analytical Procedures and Methods
- 5-4 Summary of Stack Gas Volatile Organic Target Analytes
- 5-5 Summary of Stack Gas Metal Target Analytes
- 5-6 Summary of Stack Gas Semivolatile Organic Target Analytes

5-7	Summary of Stack Gas PAH Target Analytes
5-8	Summary of Stack Gas OC Pesticide Target Analytes
5-9	Summary of Stack Gas PCB Target Analytes
5-10	Summary of Stack Gas Dioxin/Furan Target Analytes
6-1	Planned Daily Schedule
7-1	Anticipated Permit Operating Limits
7-2	Recommended Interlock Setpoints During Test Periods
	LIST OF FIGURES
	Elet of Fiedrics
3-1	Carbon Reactivation Furnace System Block Flow Diagram
3-2	Location of Critical Process Instruments
5-1	Sampling Point Locations
3-1	Example Performance Test Report Outline

ACRONYMS AND ABBREVIATIONS

acfm Actual cubic feet per minute

APC Air pollution control

ASTM American Society for Testing and Materials

AWFCO Automatic waste feed cutoff

Btu British thermal unit CAA Clean Air Act

CARB California Air Resources Board

CEM or CEMS Continuous emission monitor or Continuous emission monitoring

system

CFR Code of Federal Regulations

cm Centimeters

COPCs Compounds of potential concern

cu. ft. Cubic foot

CVAAS Cold vapor atomic absorption spectroscopy

DC Direct current

DRE Destruction and removal efficiency

dscf Dry standard cubic foot

dscfm Dry standard cubic feet per minute

EPA United States Environmental Protection Agency

ft Feet

GC/FID Gas chromatography/flame ionization detector GC/MS Gas chromatography/mass spectrometry

gpm U.S. Gallons per minute gr Grain (equals 1/7000 pound) HAP Hazardous air pollutant

HPLC High performance liquid chromatography

hr Hour

HRGC/HRMS High resolution gas chromatography/high resolution mass

spectrometry

HWC MACT Hazardous Waste Combustor Maximum Achievable Control

Technology regulations

ICP Inductively coupled plasma spectroscopy

in Inch

in w.c. Inches of water column (pressure measurement)

L Liter

Ib Pound

mg Milligram

ml Milliliter

MTEC Maximum theoretical emission concentration

NDIR Non-dispersive infrared

ng Nanogram

NVOC Nonvolatile organic compound
P&ID Piping and instrumentation diagram

PAH Polyaromatic hydrocarbon PCB Polychlorinated biphenyl

PCDD/PCDF Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans

PDT Performance Demonstration Test
PDTP Performance Demonstration Test Plan

PFD Process flow diagram

PIC Product of incomplete combustion
PLC Programmable logic controller

POHC Principal organic hazardous constituent

ppmv Parts per million by volume

ppmvd Parts per million by volume, dry basis QAPP Quality Assurance Project Plan

RCRA Resource Conservation and Recovery Act

RF Reactivation Furnace

scfm Standard cubic feet per minute

sq. ft. Square feet

SVOC Semivolatile organic compound TCDD Tetrachloro dibenzo-p-dioxin

TEQ Toxicity equivalent (related to 2,3,7,8-TCDD)

TIC Tentatively identified compound

TOE Total organic emissions

TSCA Toxic Substances Control Act

ug Microgram

VOA Volatile organic analysis
VOC Volatile organic compound
VOST Volatile organic sampling train
WESP Wet electrostatic precipitator
WCAI Westates Carbon – Arizona, Inc.

1.0 INTRODUCTION

1.1 FACILITY AND BACKGROUND INFORMATION

Westates Carbon - Arizona, Inc. (WCAI) operates a carbon reactivation facility located in the Colorado River Indian Tribes (CRIT) Industrial Park near Parker, Arizona. The facility treats spent activated carbon that has been used by industry, state and federal government agencies, and municipalities for the removal of organic compounds from liquid and vapor phase process waste streams. Once the carbon has been used and is spent, it must be either disposed of or reactivated at a facility such as WCAI. A Carbon Reactivation Furnace (RF) is used by WCAI to reactivate the spent carbon. Some of the carbon received at the Parker facility is designated as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) regulations. Much of the carbon received at the facility is not a RCRA hazardous waste, as it is either not a characteristic or listed waste. The RF is not a hazardous waste incinerator. "Hazardous waste incinerator" is defined in 40 CFR Part 63, Subpart EEE as a "device defined as an incinerator in § 260.10 of this chapter and that burns hazardous waste at any time." (40 CFR 63.1201). "Incinerator" is defined in 40 CFR 260.10 as "any enclosed device that: (1) Uses controlled flame combustion and neither meets the criteria for classification as a boiler, sludge dryer or carbon regeneration unit, nor is listed as an industrial furnace; or (2) Meets the definition of infrared incinerator or plasma arc incinerator. (emphasis supplied)" The RF does not qualify as an incinerator and instead is designated by Subpart X of the RCRA regulations as a Miscellaneous Unit. According to 40 CFR 264.601 of the Subpart X regulations, permit terms and provisions for a Miscellaneous Unit must include appropriate requirements of 40 CFR Subparts I through O and Subparts AA through CC, 40 CFR 270, 40 CFR 63 Subpart EEE, and 40 CFR 146.

Based on 40 CFR 264.601, WCAI will test the RF to demonstrate performance in accordance with the emission standards of 40 CFR 63 Subpart EEE. These emission standards are more stringent than the RCRA hazardous waste incinerator emission standards of 40 CFR 264 Subpart O. The regulations at 40 CFR 63 Subpart EEE are often referred to as the Hazardous Waste Combustor Maximum Achievable Control Technology (HWC MACT) standards. This terminology will be used in this document.

1.2 TEST PLAN PURPOSE AND ORGANIZATION

The purpose of this Performance Demonstration Test Plan (PDTP) is to identify and document the necessary process details; sampling, analytical, and QA/QC procedures; and anticipated permit operating conditions necessary for demonstration of compliance with the applicable regulatory requirements, and for demonstration of continuing compliance with those standards.

To best address the requirements for demonstrating that the RF can operate within the parameters and limits established by the applicable regulatory requirements the PDTP has been organized into the following major sections:

- 1.0 INTRODUCTION
- 2.0 FEED STREAM DESCRIPTION
- 3.0 ENGINEERING DESCRIPTION
- 4.0 TEST DESIGN AND PROTOCOL
- 5.0 SAMPLING, ANALYSIS, AND MONITORING PROCEDURES
- 6.0 TEST SCHEDULE
- 7.0 OPERATING PERMIT OBJECTIVES
- 8.0 TEST REPORT
- 9.0 DATA IN LIEU OF TESTING

TABLES

FIGURES

ATTACHMENTS

- A SAMPLING PROCEDURES
- **B ANALYTICAL PROCEDURES**
- C QUALITY ASSURANCE PROJECT PLAN
- **D CALCULATIONS**
- **E PROCESS ENGINEERING INFORMATION**
- F JUSTIFICATION FOR COMPLIANCE WITH CHLORINE FEED RATE LIMITS BY USING TDS RESTRICTIONS
- G DATA IN LIEU OF TESTING

1.3 PROCESS OVERVIEW

The carbon reactivation process consists of a multiple hearth reactivation furnace, a natural gas fired afterburner used to destroy organic contaminants released from the carbon, a wet quench, venturi scrubber, packed bed scrubber, and wet electrostatic precipitator.

1.4 TEST OBJECTIVES AND APPROACH

The WCAI Performance Demonstration Test Plan has been prepared to provide comprehensive performance testing of the RF unit to demonstrate compliance with the applicable HWC MACT emission standards and to gather data for use in a site-specific risk assessment. The objectives of the PDTP are to demonstrate regulatory compliance with standards such as Destruction and Removal Efficiency (DRE) and particulate matter emission concentration, while operating at "worst case" conditions processing normal feed materials, which have been augmented with metals, chloride, etc., to establish operating conditions that will be included in the permit. More specifically, the objectives of the Performance Demonstration Test (PDT) are as follows:

- Demonstrate Compliance with Applicable USEPA Regulatory Performance Standards (Based on HWC MACT Standards for Existing Hazardous Waste Incinerators):
 - Demonstrate a DRE of greater than or equal to 99.99% for the selected principal organic hazardous constituents (POHCs) chlorobenzene and tetrachloroethene.
 - Demonstrate stack gas carbon monoxide concentration less than or equal to 100 ppmv, dry basis, corrected to 7% oxygen.
 - Demonstrate stack gas hydrocarbon concentration of less than or equal to 10 ppmv, as propane, dry basis, corrected to 7% oxygen.
 - Demonstrate a stack gas particulate concentration less than or equal to 34 mg/dscm (0.015gr/dscf) corrected to 7% oxygen.
 - Demonstrate that the stack gas concentration of hydrogen chloride (HCl) and chlorine (Cl₂) are no greater than 77 ppmv, dry basis, corrected to 7% oxygen, expressed as HCl equivalents.
 - Demonstrate that the stack gas mercury concentration is less than or equal to 130 μg/dscm, corrected to 7% oxygen.
 - Demonstrate that the stack gas concentration of semivolatile metals (cadmium and lead, combined) is less than or equal to 240 $\mu g/dscm$, corrected to 7% oxygen.

- Demonstrate that the stack gas concentration of low volatility metals (arsenic, beryllium, and chromium, combined) is less than or equal to 97 $\mu g/dscm$, corrected to 7% oxygen.
- Demonstrate that the stack gas concentration of dioxins and furans does not exceed 0.40 ng/dscm, corrected to 7% oxygen, expressed as toxic equivalents of 2,3,7,8-TCDD (TEQ). This is the applicable standard since the gas temperature entering the first particulate matter control device is less than 400°F.

2. Establish Permit Operating Limits

- Demonstrate maximum feed rate for spent activated carbon.
- Demonstrate minimum afterburner gas temperature
- Demonstrate maximum combustion gas velocity (or a suitable surrogate indicator)
- Demonstrate maximum total chlorine/chloride feed rate
- Establish a Maximum Theoretical Emission Concentration (MTEC) limit for mercury
- Demonstrate system removal efficiency (SRE) for semivolatile and low volatility metals so feed rate limits can be developed by extrapolation from test results.
- Establish appropriate operating limits for the air pollution control system components.

3. Gather Information for Use in a Site-Specific Risk Assessment

- Measure emissions of metals, including hexavalent chromium
- Measure emissions of specific volatile and semivolatile products of incomplete combustion (PICs)
- Measure emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF)
- Measure emissions of polychlorinated biphenyls (PCBs)
- Measure emissions of specific organochlorine pesticides
- Measure emissions of total volatile, semivolatile, and nonvolatile organics
- Determine the stack gas particle size distribution.

1.5 TEST PROTOCOL SUMMARY

In order to accomplish the PDT objectives, (i.e., demonstrating that the unit will meet all applicable environmental performance standards) a single test condition representing "worst case" operations of minimum temperature, maximum combustion gas velocity (minimum residence time), and maximum waste feed rate will be performed. The test will consist of at least three replicate sampling runs.

A summary description of the testing conditions, analytical parameters, and sampling methods follows:

1.5.1 Test Condition 1 ("Worst-Case" Operations)

Sampling and monitoring protocols that will be utilized while carrying out the performance test are summarized as follows:

- Spent Activated Carbon Feed total chlorine/chloride, elemental (C, H, N, O, S, moisture), volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hq, Ni, Se, Aq, Tl, V, Zn)
- Makeup Water volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Caustic feed to APC volatile organics, semivolatile organics, and total metals (AI, Sb, As, Ba, Be, Cd, Cr, Cu, Co, Pb, Hg, Ag, TI, Se, Ni, V, Zn)
- Scrubber Blowdown volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hq, Ni, Se, Aq, Tl, V, Zn)
- Wastewater Discharge to POTW volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Stack gas particulate, HCl, and Cl₂ using EPA Method 26A
- Stack gas target volatile organics using VOST, SW-846 Method 0030
- Stack gas target semivolatile organics and organochlorine pesticides using SW-846 Method 0010
- Stack gas PAHs and PCBs using a separate SW-846 Method 0010 sampling train
- Stack gas PCDD/PCDF using SW-846 Method 0023A
- Stack gas total volatile organics using SW-846 Method 0040
- Stack gas total semivolatile and nonvolatile organics using SW-846 Method 0010
- Stack gas metals (Al, Sb, As, Ba, Be, Cd, total Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, and Zn) using EPA Method 29
- Stack gas hexavalent chromium using SW-846 Method 0061
- Stack gas particle size distribution using a cascade impactor

- Stack gas CO and O₂ by permanently installed CEM according to the protocols in the Appendix to 40 CFR 63, Subpart EEE; Performance Specification 4B of 40 CFR 60, Appendix B.
- Stack gas total hydrocarbons (as propane) by temporary CEM according to EPA Method 25A and the protocols in the Appendix to 40 CFR 63, Subpart EEE.

1.6 DEVELOPMENT OF PERMIT LIMITS

WCAI is required to establish operating limits (applicable whenever RCRA hazardous spent activated carbon is in the reactivation furnace) in its permit to ensure that the RF system complies with the applicable USEPA environmental performance standards at all times that RCRA hazardous spent activated carbon is being treated. Under the HWC MACT, the regulations establish a comprehensive list of regulated parameters at 40 CFR 63.1209 (j) through (p) which are used to ensure continuing regulatory compliance. Other RCRA permitting guidance documents also suggest certain permit limits and means for establishing those limits. Finally, the RF has been operating since 1996 with certain limits imposed by plant operations personnel.

Considering the configuration of the RF system and the characteristics of the spent activated carbon to be fed, WCAI anticipates establishing process operational limits on the following parameters:

- Minimum afterburner gas temperature
- Maximum spent activated carbon feed rate
- Maximum total chlorine and chloride feed rate
- Maximum feed rate of mercury (based on MTEC)
- Maximum feed rate of semivolatile metals (total combined lead and cadmium)
- Maximum feed rate of low volatility metals (total combined arsenic, beryllium, and chromium)
- Minimum venturi scrubber pressure differential
- Minimum quench/venturi scrubber total liquid flow rate
- Minimum packed bed scrubber pH
- Minimum packed bed scrubber pressure differential
- Minimum packed bed scrubber liquid flow rate
- Minimum scrubber blowdown flow rate
- Minimum WESP secondary voltage

Maximum stack gas flow rate (indicator of combustion gas velocity).

These operating limits will be established as described in Section 7.0 of this document. The approach taken for establishing operating limits generally follows the specifications of 40 CFR 63 Subpart EEE and guidance prepared for RCRA incinerator permits. However, since those regulations and guidance do not strictly apply to this unit, but are used as guidelines for the development of appropriate limits, WCAI is also proposing to establish some limits based on current operating practices and automation system capabilities, which have proven to be effective for this particular facility.

1.7 TEST PLAN DEVELOPMENT AND CONDUCT OF THE PERFORMANCE DEMONSTRATION TEST

In August 2001, USEPA requested that WCAI prepare a performance demonstration test plan and a risk assessment workplan as part of the process for completing the RCRA facility permit. In its August letter, USEPA identified a variety of general requirements for the plans. In response to USEPA's request, WCAI selected Focus Environmental, Inc. to provide permitting assistance, overall project management, and preparation of the Performance Demonstration Test Plan. Focus Environmental, Inc. is an independent engineering consulting firm headquartered in Knoxville, Tennessee, and has no affiliation with WCAI or it's parent company, USFilter, other than its contract to conduct the permitting activities for the Parker facility.

WCAI will select qualified and experienced performance testing contractors and laboratories to conduct all aspects of the Performance Demonstration Test, including overall test management, stack gas sampling, laboratory analysis, data review, calculation of results, and test reporting. These firms will be independent contractors having no affiliation with WCAI, or it's parent company, USFilter, other than their contract to conduct the testing services for the Parker Facility.

2.0 FEED STREAM DESCRIPTION

2.1 FEED STREAM CHARACTERISTICS

The feed streams for the WCAI RF are described in the following sections.

2.1.1 Spent Activated Carbon

An aqueous slurry of spent activated carbon is the only material treated in the RF. The facility treats spent activated carbon that has typically been used for treating industrial and municipal wastewater, groundwater, surface water, process materials, or for air pollution control. Constituents in the streams being treated are adsorbed onto the surface and into the internal pores of the activated carbon. The activated carbon is said to be "spent" when it has adsorbed a certain amount of chemicals. The amount of chemicals adsorbed will vary from site to site, but generally the organic loading is no greater than 0.3 pounds of chemicals per pound of dry activated carbon. The organic loading on an average basis is much lower than the 0.3 pounds per pound of activated carbon maximum loading. Average loading data for the period from 1997 through 2001 indicated a range of 0.0038 to 0.0071 pounds of organic per pound of dry carbon, with an overall weighted average of 0.0055 pounds of organic per pound of dry carbon.

The number of different regulated constituents adsorbed on the activated carbon from a given source depends on the composition of the stream being treated. The list of organic constituents that may be adsorbed on spent carbon is very extensive, and includes, but is not limited to, volatile organic compounds, polynuclear aromatic hydrocarbons, phthalates, amines, and pesticides. Activated carbon is not customarily used to remove metals from a waste stream, although, low concentrations may be expected in the spent carbon. Actual facility data for the spent activated carbon is included in Tables 2-1 and 2-2. The spent activated carbon will be received, stored and handled as per the Waste Analysis Plan located in the facility's RCRA Part B permit application. The facility will not accept spent carbon containing TSCA-regulated levels of PCBs, infectious wastes, regulated levels of radioactive wastes (as regulated by the Nuclear Regulatory Commission) or spent carbon exhibiting the characteristics of corrosivity or reactivity. Additionally, WCAI will not accept spent activated carbon that is classified as a dioxin-listed hazardous wastes (i.e., those carrying EPA Waste Codes F020, F021, F022, F023, F026, and F027).

Document Name: PerfDemoTestPlan~Rev0~Clean.doc

2.1.2 Fuels

The only auxiliary fuel used for the RF is natural gas. Typical characteristics of natural gas are included in Table 2-3.

2.1.3 Other Feed Streams

The only other feed stream to the RF is steam. The steam is used in the RF to assist in the reactivation process of the spent carbon. The steam is not expected to contain any RCRA Appendix VIII Hazardous Constituents or Hazardous Air Pollutants (HAPs).

2.2 FEED STREAM MANAGEMENT

The feed stream management of the spent carbon is described in the following sections.

2.2.1 Storage

Spent carbon is received by truck in containers (i.e., drums, vessels, supersacks, roll-off bins, etc.) or in tank trucks. Following inspection and acceptance at the facility, containerized spent carbon is unloaded in the unloading and receiving area where it is inspected and sampled. If the load is accepted for treatment, the containerized spent carbon is either transferred into one of the four spent carbon storage tanks via a feed hopper or moved to the Container Storage Area.

Spent carbon received in large containers, such as roll-offs and slurry trailers, is typically transferred directly to the spent carbon storage tanks through a feed hopper. Spent carbon received in smaller containers, such as drums, is typically moved to the container storage area in the containers in which it was received and subsequently transferred to the spent carbon storage tanks. The containerized spent carbon is transferred to the storage tanks via a hopper because it cannot be pumped directly from the container to the storage tank. Water is added as the carbon passes through the hopper to facilitate removal of the spent carbon from the hopper via an eductor. The carbon is transferred to the storage tanks as a water-carbon slurry.

The tank trucks carrying the bulk loads are retained in the unloading and receiving area and the spent carbon is inspected and sampled. If the shipment is accepted for treatment, the spent carbon is transferred in slurry form to one of the four process storage tanks, directly or through a feed hopper. Water used in the transfer process is supplied from the recycle water system

which consists of two recycle water storage tanks and associated valves and piping. The recycle water is periodically monitored and pH-adjusted, when required, for corrosion control. From the process storage tanks, the carbon is transferred in slurry form to the Carbon Reactivation Furnace (RF).

2.2.2 Blending

Blending of the spent carbon is required to control the concentration of chlorine and chlorides present in the feed material to maintain compliance with WCAI's wastewater discharge limit for TDS.

3.0 ENGINEERING DESCRIPTION

A block flow diagram of the carbon reactivation process is shown in Figure 3-1. Spent carbon slurry is fed from the Furnace Feed Hopper into a dewatering screw where the carbon is dewatered prior to introduction into the Carbon Reactivation Furnace (RF). Water from the dewatering screw is returned to one of the two recycle water storage tanks. The RF is a multiple hearth furnace consisting of five hearths. The spent carbon is introduced into the top hearth and flows downward through the remaining four hearths. Reactivated carbon exits the bottom hearth through a cooling screw. The RF is equipped with a primary combustion air fan and two shaft cooling fans. Steam from a small boiler is introduced into the RF to complete the reactivation process. Natural gas burners are provided to ensure adequate heat input to the reactivation unit for all of the spent carbons that are reactivated at the facility. The hot gases generated in the RF flow upward through the hearths and exit from the topmost hearth and are routed to an afterburner to ensure the thermal oxidation of any organic matter that is not oxidized in the reactivation unit. The afterburner is equipped with two burners that utilize natural gas as the fuel source. From the afterburner, the gases are quenched by direct water contact and routed through a variable throat venturi scrubber for particulate matter control. From the venturi scrubber, the gases are routed to a packed bed scrubber for acid gas control. From the packed bed scrubber, the gases flow through a wet electrostatic precipitator, used for fine particulate matter and metals control. From the wet electrostatic precipitator (WESP), the gases are routed through a stack to the atmosphere. The motive force for moving the gases through the air pollution control system is supplied by an induced draft fan located between the WESP and stack.

A pH-controlled scrubbing medium (water and caustic solution) is supplied to the air pollution control system from the scrubber water system. The pH is continuously monitored to ensure efficient acid gas removal in both the quench/venturi scrubber and the packed bed scrubber. Caustic is added based on the pH of the scrubber water.

The air pollution control equipment uses a closed loop recycle water system. Periodically, a portion of the scrubber water in the system is discharged (blowdown) in order to prevent the excessive build-up of total dissolved solids in the scrubber water system.

Scrubber blowdown from the RF air pollution control equipment is either discharged directly to the Publicly Owned Treatment Works (POTW) or is treated in a RCRA-exempt wastewater treatment unit, and then discharged to the POTW. The discharge to the POTW is continuously monitored for pH, total dissolved solids, flow and temperature to ensure compliance with the discharge limitations found in the facility's industrial wastewater discharge permit.

3.1 THERMAL TREATMENT SYSTEM

The thermal treatment system is a multiple hearth furnace, consisting of five hearths followed by an afterburner. Spent carbon is introduced into the top hearth of the reactivation unit and flows downward through the remaining four hearths. The top two hearths are unfired hearths. Hot combustion gases generated in the bottom three hearths are used to complete the dewatering of the spent carbon. The bottom three hearths are fired hearths where the reactivation process occurs. Rabble arms, with teeth, each connected to a rotating center shaft, are located above each hearth. The rabble teeth plow the carbon material across the hearth surface and towards drop holes. The carbon falls through the drop holes to the next lower hearth, and eventually to the outlet of the reactivation unit. Reactivated carbon exits the bottom hearth through a cooling screw. The RF is equipped with a primary combustion air fan, and two center shaft cooling fans. Steam from a natural gas fired boiler is introduced into the RF to complete the reactivation process. Natural gas burners are provided to ensure adequate heat input to the reactivation unit for all carbons that are reactivated at the facility.

3.1.1 Type, Manufacturer's Name and Model Number

The RF is a multiple hearth furnace consisting of five hearths and an afterburner manufactured by Hankin Environmental Systems, Inc. The Hankin multiple hearth furnace is a 12'10 ¾" O.D. x 5 Hearths designed to nominally reactivate 2,760 lb/hr of spent carbon feed. Drawings and specifications for the multiple hearth furnace and afterburner are presented in Attachment E.

3.1.2 System Capacity

The RF unit is currently authorized to reactivate 2,760 pounds per hour of spent carbon feed.

3.1.3 Thermal Treatment and Combustion Chamber(s)

Following dewatering the spent granular carbon is fed to the top section of the multiple-hearth furnace. In the pre-drying and drying zones (the top hearths) the water retained in the pores

and on the surface of the carbon is evaporated by the counter-current flow of hot combustion gases. The temperature of the carbon is raised to approximately 210°F. Upon application of heat, water will evaporate freely when the particle temperature goes over 200°F. The adsorbed water is freed at temperatures of approximately 212°F to 230°F.

Upon the application of heat to the particles at temperatures over 600°F, the high molecular weight organic impurities will crack to produce gaseous hydrocarbons, hydrogen and water vapor which escape the pores of the granular carbon while some fixed carbon is retained in the pores of the granules. In these pre-heating and decomposition zones (middle hearths) the temperature of the carbon is increased to about 750°F in a virtually oxygen-free atmosphere. Under these conditions the adsorbed organic impurities in the pores of the carbon are pyrolyzed and all volatile materials are driven off.

The carbonaceous residue, left behind in the pore structure of the carbon by the pyrolyzation process, is oxidized in the final heat up and gasification zones (lower hearths) in a way which avoids damage to the original pore structure of the carbon. This is the most important commercial phase of the reactivation process, with the critical parameters being carbon temperature, retention time, and steam and carbon dioxide concentration in the furnace atmosphere. Carbon bed temperatures may range from 1450°F-1600°F. Combustion of natural gas provides the required heat. Carbon dioxide and some water vapor are part of the products of combustion. Steam is injected as necessary.

The afterburner is a self-supporting vertical cylindrical chamber approximately 33 feet high with an inside refractory diameter of approximately 5 feet. The design incorporates a mixing zone, choke ring and a minimum residence time at temperature of greater than one second. The afterburner shell is constructed of steel plate and is internally lined with firebrick and castable insulation. The afterburner is equipped with two low NO_x burners, which utilize heated combustion air. The afterburner chamber is fitted with a total of six air injection nozzles which are placed to provide combustion air and turbulence to promote the oxidation of organic materials in the flue gas. The afterburner is designed to thermally oxidize greater than 99.99 percent of all organic matter entering the afterburner in the furnace off gas. A cross-section of the afterburner and the specification for the afterburner can be found in Attachment E. Actual material usages will be those listed in the specification or their functional equivalent.

3.1.4 Residence Time Determination

The residence time for the solid carbon in the Carbon Reactivation Furnace is 42 minutes at a shaft speed of 1 rpm.

3.2 BURNER AND FEED SYSTEMS

Six natural gas burners are installed in the RF, two per hearth on hearths 3, 4, and 5. Two natural gas burners are installed in the afterburner.

3.2.1 Burner Description

The six burners installed in the RF are North American Manufacturing Company burners (NA 6422-6) or their functional equivalent. The two burners installed in the afterburner are North American Manufacturing Company burners (NA 6514-8-B) or their functional equivalent. Literature describing these burners can be found in Attachment E. Materials of construction of these burners are listed in the literature.

3.2.2 Spent Activated Carbon Feed System

The spent activated carbon feed system to the RF consists of a feed hopper, a dewatering screw, and a weigh belt conveyor. The spent carbon/recycle water slurry is discharged from the feed hopper to the dewatering screw via a control valve. The dewatered spent carbon is discharged from the dewatering screw on to the weigh belt conveyor, which is used to measure the feed rate to the RF.

3.2.3 Auxiliary Fuel System

The six burners in the RF and the two burners in the afterburner are fired with natural gas, supplied by the local utility company via pipeline.

3.2.4 Combustion Air

Combustion air is supplied to the six RF burners and two afterburner burners by a combustion air blower. The blower is designed to supply approximately 351,600 ACFH of preheated combustion air. Fan specifications are located in Attachment E.

3.3 REACTIVATED CARBON HANDLING SYSTEM

The reactivated carbon exiting from the RF is a product. The reactivated carbon is discharged from the RF into a screw cooler and from the screw cooler through an enclosed conveyor system into one of three reactivated carbon product storage tanks. From the reactivated carbon storage tanks, the reactivated carbon product is transported through an enclosed conveyor to a product packaging facility. At the product packaging facility, the reactivated carbon is removed from the storage tanks and placed in appropriate containers for shipment to customers.

Scrubber blowdown from the RF air pollution control equipment is treated in a RCRA-exempt wastewater treatment unit, or discharged directly to the POTW. The discharge to the POTW is continuously monitored for pH, total dissolved solids, flow and temperature to ensure compliance with the discharge limitations found in the facility's industrial wastewater discharge permit.

3.4 AIR POLLUTION CONTROL (APC) SYSTEM

The APC system for the RF includes a quench/venturi scrubber, a packed bed scrubber and a wet electrostatic precipitator. Exhaust gases from the thermal treatment system are continuously routed through the APC equipment, and cannot by-pass the APC equipment under any circumstances. The individual components of the APC equipment are described in the following sections.

3.4.1 Quench/Venturi Scrubber

The Quench/Venturi Scrubber is a dual-purpose device used to rapidly quench the hot combustion gases exiting the afterburner and to remove particulate matter. The quench section uses water sprays to cool the afterburner exit gas to the point of adiabatic saturation (approximately 170 to 190°F). The venturi scrubber has an adjustable throat, and is a low energy, vertical down flow type. The throat area is adjusted by a pneumatic cylinder actuator and an electro/pneumatic positioner. The remotely adjustable throat is automatically controlled to maintain a constant pressure differential. The venturi scrubber is located directly below the quench section and is connected by a flooded elbow to the packed bed scrubber. The elbow incorporates a water-filled gas impact section directly beneath the throat to prevent erosion of the shell. The water supply for quench and venturi irrigation is recirculated scrubber water at a total flow of approximately 7.5 gpm/1000 ACFM.

The design data and equipment descriptions for the quench/venturi scrubber as well as a description of the physical dimensions of the venturi scrubber section can be found in Attachment E. Actual material usages will be those listed therein, or their functional equivalent.

3.4.2 Packed Bed Scrubber

The packed bed scrubber consists of a vertical up flow and cylindrical disengaging section followed by a packed bed section and mist eliminator. The bottom portion of the scrubber is used to separate entrained water droplets from the gas prior to entering the packed section of the scrubber.

The packed bed scrubber is designed to remove a minimum of 99 percent of the incoming hydrogen chloride.

The design data and equipment description for the packed bed scrubber as well as a description of the physical dimensions of the packed bed scrubber can be found in Attachment E. Actual material usages will be those listed therein or their functional equivalent.

3.4.3 Wet Electrostatic Precipitator

The wet electrostatic precipitator (WESP) is a vertical hexagonal tube design with self-irrigating tubes. The WESP consists of inlet gas distribution to promote even distribution of the process gas flow entering the WESP, inlet and outlet plenums and a collecting electrode tube bundle. The WESP is equipped with outboard high voltage insulator compartments which include a purge air system, high voltage distribution-support grids, high intensity rigid tube type charging/precipitating discharge electrodes, high voltage power supply (transformer/rectifier and controller) system, ground sticks, safety key interlocks, warning labels, and electronic control logic equipment and valving.

The WESP, in conjunction with the venturi scrubber, is designed to achieve a maximum outlet particulate matter grain loading of 0.015 grains/dscf adjusted to 7 percent oxygen.

The design data and equipment description for the WESP as well as a description of the physical dimensions of the WESP can be found in Attachment E. Actual material usages are those listed therein or their functional equivalent.

3.4.4 ID Fan

A variable speed induced draft fan is provided to exhaust combustion gases from the furnace and afterburner and through the air pollution control system. Design specifications for the fan can be found in Attachment E. Actual materials of construction will be those listed in the specification or their functional equivalent.

3.4.5 Stack

The treated gas stream is exhausted to the atmosphere via a 110 foot high stack with an inside diameter of two feet and a gas outlet that is 19.75 inches in diameter. The stack is equipped with ports for continuous emissions monitoring, stack gas flow rate monitoring, and exhaust gas sampling. A stack drawing is provided in Attachment E. Actual materials of construction will be those listed in the specification or their functional equivalent. Additional sampling ports may be installed for the extensive sampling to be conducted during this Performance Demonstration Test. A stack sampling port location drawing is included in Attachment E.

3.5 PROCESS MONITORING, CONTROL, AND OPERATION

The facility is equipped with a programmable logic control (PLC) system which monitors and/or controls process variables to ensure proper facility operation. The RF system is equipped with instrumentation to monitor and control process flows, temperatures, and pressures, and to transmit signals to the main control system. The automation system has the capabilities of controlling valves, motors, pumps, and fans as well as alarming and initiating waste feed cutoff interlocks if process conditions deviate from established limits.

Figure 3-2 shows the location of pertinent instrumentation related to permit compliance. Complete Piping and Instrumentation Diagrams (P&IDs) are included in Attachment E. It is important to note that these drawings include many components of the facility that are exempt from permitting under various provisions of RCRA. These components are provided for informational purposes and ease of review only, and they are not intended to become regulated components of the facility. Information concerning the major process instruments associated with regulatory compliance is presented in Table 3-1. Instrument tag numbers correspond to the designations shown on the P&IDs. Calibration schedules are based on manufacturer's recommendations and WCAI operating experience.

Process monitoring and emissions monitoring performed for regulatory compliance is conducted on a continuous basis in accordance with USEPA definitions of continuous monitors.

A <u>"Continuous Monitor"</u> is a device (or series of devices) which continuously samples the regulated parameter without interruption, evaluates the detector response at least once every 15 seconds, and computes and records the average value at least every 60 seconds, except during periods of calibration or as otherwise allowed by the applicable regulations or guidelines. For many parameters, rolling averages are calculated. A <u>"Rolling Average"</u> is defined as the arithmetic mean of a defined number of the most recent one-minute average values calculated by the continuous monitor. For example, an hourly rolling average would incorporate the 60 most recent one-minute average values. As each new one-minute average value is computed, the least recent of the 60 values is discarded and a new hourly rolling average is calculated and recorded. 12-hour rolling averages use 720 one-minute average values rather than 60.

Two subsets of continuous monitoring systems are employed on the RF: process continuous monitoring systems (CMS) and continuous emissions monitoring systems (CEMS). The following is a discussion of each type of continuous monitoring system.

3.5.1 Process Continuous Monitoring System (CMS)

Figure 3-2 shows the general location and function of the temperature, pressure, and flow indicating and control devices for the carbon reactivation system. The specifications for these devices are shown in Table 3-1.

The following is a discussion of each type of process monitoring and control to be performed in the RF system for regulatory compliance purposes.

Spent Activated Carbon Feed Rate

The flow rate of the spent activated carbon is monitored and controlled using a weigh belt conveyor and carbon slurry feed valve. When the feed valve is open, carbon slurry drops into the dewatering screw and is then discharged onto the weight belt conveyor, which feeds the carbon to the RF. The feed rate control system consists of a weigh cell, weight transmitting element, weight indicating controller, variable timed open/closed carbon slurry feed valve, and continuous weight feed rate recorder. The desired spent activated carbon feed rate is achieved

by the control system adjusting the time that the carbon slurry feed valve is open and closed. Automatic waste feed cutoff interlocks stop the weigh belt conveyor which stops the feed of carbon to the RF.

Regulated Constituent Feed Rates

The total feed rate of mercury, semivolatile metals (the combination of cadmium plus lead), and low volatility metals (the combination of arsenic, beryllium, plus chromium) will be continuously monitored and recorded in accordance with the HWC MACT regulations. This will be accomplished by the process computer which continuously monitors the flow rate of spent activated carbon, and multiplies that flow rate by the constituent concentration, which is input to the computer whenever the feedstream characterization is updated. If a regulated constituent is believed to have the potential to be present in the spent activated carbon, but is not detected by the relevant analysis, then the detection limit for that constituent will be used in the calculation. If a constituent is not expected to have the potential to be present in the spent activated carbon, then the concentration of that constituent will be set as zero.

Afterburner Temperature

The RF afterburner combustion temperature is continuously measured by thermocouples located in the afterburner chamber. The automatic temperature controller accepts the signal from the thermocouple and manipulates the auxiliary fuel feed rate. The automatic waste feed cutoff interlock is activated during low temperature conditions.

Venturi Pressure Differential

Venturi scrubber pressure differential is measured and controlled as an indicator of the energy supplied for particulate matter removal. A minimum pressure differential is necessary for proper control efficiency. The pressure differential is continuously measured by a pressure differential indicator with pressure taps located at the inlet and outlet of the venturi. The pressure differential is controlled by changing the position of the venturi throat control valve elements.

Quench/Venturi Scrubber Liquid Flow Rate

The recycle flow rate is continuously monitored using magnetic flow meters in the recycle water lines. A minimum recycle water flow rate is maintained in order to provide sufficient cooling and

scrubbing water for particle removal. A low total recycle flow rate will initiate an automatic waste feed cutoff.

Packed Bed Scrubber pH and Flow Rate

The packed bed scrubber recycle pH and the flow rate of recycled liquid to the packed bed scrubber influence the effectiveness of acid gas removal. The pH is measured continuously by an in-line pH probe installed in the recycle liquid piping. The recycle flow rate is continuously monitored using a magnetic flow meter in the recycle water line. Either low pH or low packed bed scrubber recycle flow rate will initiate an automatic waste feed cutoff.

Packed Bed Scrubber Pressure Differential

The differential pressure across the packed bed is measured as an indicator of proper liquid and gas distribution in the tower. The pressure differential is continuously measured by a differential pressure element with taps located at the inlet and outlet of the packed bed scrubber.

WESP Secondary Voltage

Although the HWC MACT regulations, do not require monitoring of any WESP performance indicators, WCAI will monitor the secondary voltage as an indicator of proper collection of fine particles and metals. A minimum secondary voltage of 14 kVDC has been established based upon operating experience.

Scrubber Blowdown Flowrate

In order to conserve water, WCAI recycles most of the liquid from the air pollution control system. In order to prevent the buildup of dissolved solids, WCAI bleeds water from the system. As water is bled, fresh makeup water is added. The APC system blowdown flow rate is continuously monitored using a magnetic flowmeter, and a low flow rate will trigger an automatic waste feed cutoff.

Stack Gas Flow Rate

The flow rate of stack gases is used as the indicator of combustion gas velocity prescribed by the applicable regulations. A flow sensor located in the stack provides the direct flow measurement. High stack gas flow rate will initiate an automatic waste feed cutoff.

3.5.2 Continuous Emissions Monitoring System (CEMS)

The exhaust gases are continuously monitored for carbon monoxide and oxygen content as an indicator of proper operation of the combustion process. To ensure these monitors are functioning properly, they are calibrated according to the protocols specified in the Appendix to 40 CFR 63 Subpart EEE, and Performance Specification 4B of 40 CFR 60 Appendix B.

The oxygen analyzer is an Ametek FCA-Control paramagnetic analyzer. The carbon monoxide analyzer is a Thermo Environmental Model 48, non-dispersive infrared monitor having a dual range of 0-100 ppm and 0-1000 ppm.

Performance specifications for the CEMS are shown in Table 3-2. Additional specifications, as well as a drawing of the sampling system can be found in Attachment E.

3.5.3 Safety and Automatic Waste Feed Cutoffs

The control system includes an automatic waste feed cutoff (AWFCO) system that stops the feed of spent activated carbon when operating conditions are at or near limits necessary to comply with specific permit conditions. In addition, the spent activated carbon feed is automatically stopped if the range of the measurement instrument is exceeded or if there is a malfunction of the continuous monitoring system. A listing of the AWFCO parameters is provided in Table 3-3. When any of these parameters deviates from the established limit, an electronic signal from the control system will stop the carbon weigh belt feeder. Anticipated limits for these and other permit conditions are discussed in Section 7.0 of this plan.

On a monthly basis, during RF operations, the AWFCO system will be tested, without feed interruption, by running a software routine to check PLC logic functions and alarm logging associated with the AWFCO subsystem. Each of the regulatory AWFCOs will be tested by using a control system console to input a software value which corresponds to an exceedance of the permit limit. Verification will then be made that the control system, in response to the test input, sends out a signal to trigger AWFCOs. The alarm logs will be checked to verify that the appropriate alarm was recorded. It should be noted that during the brief period of time when the AWFCO parameters are being tested, regulatory AWFCOs will be precluded. A maximum time limit of one minute per test for each parameter will be imposed so as to minimize AWFCO downtime. Non-regulatory AWFCOs will not be affected by the test.

3.6 PROCEDURES TO RAPIDLY STOP WASTE FEEDS AND CONTROL EMISSIONS

3.6.1 Rapidly Stopping Spent Activated Carbon Feeds

The RF is controlled by a process control computer. WCAI has included alarms and waste feed cutoff interlock setpoints which will automatically stop the feed of spent activated carbon before any permit limits are exceeded. In the event any of these preprogrammed operating setpoints are reached, the computer will take automatic action to stop the carbon weigh belt conveyor to immediately stop spent activated carbon feed to the system. The same action to cease spent activated carbon feed can be activated from the control room by operating personnel. These actions do not necessarily constitute a shutdown of the RF; only a stoppage of spent activated carbon feed. The RF will normally operate on auxiliary fuel after spent activated carbon feed is ceased to maintain operating temperature.

3.6.2 Shutting Down the System

RF system shutdowns may occur for two reasons:

- 1. A loss or malfunction of systems or controllers critical to maintaining performance standards and operating requirements.
- 2. A scheduled shutdown for normal maintenance or other operational purposes.

In the event of a system failure, the RF system is equipped with spent activated carbon feed and fuel shutoff mechanisms which fail to the "safe" (closed or off) position. Critical automation equipment or instrumentation failures will result in automatic stoppage of spent activated carbon feed and partial or complete system shutdown, depending on the severity of the failure or malfunction. Operations personnel have the ability to initiate an emergency system shutdown manually from the control room, although a controlled shutdown is preferred. Complete shutdown of the RF system can be undertaken as required in an orderly fashion to allow for a proper rate of cooling. WCAI maintains standard operating procedures including those for normal shutdown of the RF system. Normal and emergency system shutdown procedures are summarized in Attachment E.

3.6.3 Controlling Emissions During Equipment Malfunctions

The RF system is totally sealed to prevent fugitive emissions under all operating or malfunction conditions. Equipment shells and interconnecting ductwork are free from openings or gaps. Emissions from the spent activated carbon feed point are prevented through the use of a rotary

air lock on the multiple hearth furnace feed port. Emissions from the rotating parts in the multiple hearth are prevented by a sand seal. Reactivated carbon product handling is totally enclosed. Daily inspections are conducted in accordance with the inspection procedures of the RCRA Permit Application. Process gases are always directed through the emissions control equipment, and there are no provisions to bypass the air pollution control system. In addition, the emissions control equipment is among the last equipment to be taken off-line under any circumstance. In the event of an equipment malfunction affecting RF system performance, spent activated carbon feed is automatically discontinued. Stopping the spent activated carbon feed immediately eliminates the flow of untreated material into the RF system, however since the spent activated carbon takes 42 minutes to travel through the reactivation furnace hearths, a slight potential for emissions remains during this time. To the greatest extent possible, the afterburner and emissions control equipment will continue to operate while the malfunction is corrected. Spent activated carbon feed may be resumed once operating conditions have been returned within the permit limits. If the malfunction can not be corrected in a reasonable time frame or requires the unit to be taken off line, the reactivation furnace, afterburner, and APC systems will be shut down in an orderly fashion according to standard operating procedures. Spent carbon feed will not resume until the malfunction has been corrected and the entire RF system has been returned to operating conditions within the permitted limits.

3.6.4 Emergency Safety Vent Operations

The WCAI RF design does not require or utilize an emergency safety vent. Process gases are always directed through the emissions control equipment, and there are no provisions to bypass the air pollution control system.

4.0 TEST DESIGN AND PROTOCOL

4.1 REGULATORY REQUIREMENTS

A Carbon Reactivation Furnace is used by WCAI to reactivate spent activated carbon. Some of the carbon received at the Parker Facility is designated as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) regulations. Much of the carbon received at the facility is not a RCRA hazardous waste, as it is either not a characteristic or listed waste. The RF is not a hazardous waste incinerator. "Hazardous waste incinerator" is defined in 40 CFR 63, Subpart EEE, as a "device defined as an incinerator in §260.10 of this chapter and that burns hazardous waste at any time." (40 CFR 63.1201). "Incinerator" is defined in 40 CFR 260.10 as "any enclosed device that: (1) Uses controlled flame combustion and neither meets the criteria for classification as a boiler, sludge dryer or carbon regeneration unit, nor is listed as an industrial furnace; or (2) Meets the definition of infrared incinerator or plasma arc incinerator. (emphasis supplied)" The RF does not qualify as an incinerator and instead is designated by Subpart X of the RCRA regulations as a Miscellaneous Unit. According to 40 CFR 264.601 of the Subpart X regulations, permit terms and provisions for a Miscellaneous Unit must include appropriate requirements of 40 CFR Subparts I through O and Subparts AA through CC, 40 CFR 270, 40 CFR 63 Subpart EEE, and 40 CFR 146.

Based on 40 CFR 264.601, WCAI will test the RF to demonstrate performance in accordance with the emission standards of 40 CFR 63 Subpart EEE applicable to existing incinerators. These emission standards are more stringent than the RCRA hazardous waste incinerator emission standards of 40 CFR 264 Subpart O. WCAI is proposing to establish operating limits to ensure continuing compliance with its permit using an approach which generally follows the specifications of 40 CFR 63 Subpart EEE and guidance prepared for RCRA incinerator permits. However, since those regulations and guidance do not strictly apply to this unit, but may be used as guidelines for the development of appropriate limits, WCAI is also proposing to establish some limits based on current operating practices and automation system capabilities, which have proven to be effective for this particular facility.

4.1.1 40 CFR 60 Subpart EEE CAA Requirements

As stated above, WCAI will test the RF to demonstrate performance in accordance with the emission standards of 40 CFR 63 Subpart EEE applicable to existing incinerators. According to

40 CFR 63.1201, an existing source under Subpart EEE is any affected source, the construction or reconstruction of which commenced on or before April 19, 1996. Part 63, Subpart A, defines "commenced", with respect to construction or reconstruction, as either (a) undertaking a continuous program of construction or reconstruction, or (b) entering into a contractual obligation to undertake and complete, within a reasonable time, a continuous program of construction or reconstruction.

WCAI signed a Trade Contract (No. 21-4527-AF) with Hankin Environmental Systems, dated October 17, 1995, to construct RF-2 (the currently operating RF unit). The contract was signed by Stephen McDonough (Hankin) and Mark Hepp (WCAI). A Purchase Order was written on December 27, 1995 to construct the concrete pad for RF-2, with actual pad construction beginning on December 29, 1995. The multiple hearth was erected in January 1996. WCAI has dated pictures showing the construction process. Startup occurred July 11, 1996. Consequently, WCAI had clearly entered into a contractual obligation to undertake the construction of RF-2 well before April 19, 1996, and under a continuous program of construction, the unit was completed within a reasonable period of time.

Since this RF system would qualify as an existing unit if it were subject to Subpart EEE, the appropriate emission standards for this unit are the standards for existing incinerators under the Hazardous Waste Combustor Maximum Achievable Control Technology (HWC MACT) regulations of 40 CFR 63, Subpart EEE. Specific requirements are summarized as follows:

- Demonstrate a DRE of greater than or equal to 99.99% for the selected POHCs chlorobenzene and tetrachloroethene.
- Demonstrate stack gas carbon monoxide concentration less than or equal to 100 ppmv, dry basis, corrected to 7% oxygen.
- Demonstrate stack gas hydrocarbon concentration of less than or equal to 10 ppmv, as propane, dry basis, corrected to 7% oxygen.
- Demonstrate a stack gas particulate concentration less than or equal to 34 mg/dscm (0.015 gr/dscf), corrected to 7% oxygen.
- Demonstrate that the stack gas concentration of hydrogen chloride (HCI) and chlorine (CI₂) are no greater than 77 ppmv, dry basis, corrected to 7% oxygen, expressed as HCI equivalents..
- Demonstrate that the stack gas mercury concentration is less than or equal to 130 μg/dscm, corrected to 7% oxygen.

- Demonstrate that the stack gas concentration of semivolatile metals (cadmium and lead, combined) is less than or equal to 240 μg/dscm, corrected to 7% oxygen.
- Demonstrate that the stack gas concentration of low volatility metals (arsenic, beryllium, and chromium, combined) is less than or equal to 97 μg/dscm, corrected to 7% oxygen.
- Demonstrate that the stack gas concentration of dioxins and furans does not exceed 0.40 ng/dscm, corrected to 7% oxygen, expressed as toxic equivalents of 2,3,7,8-TCDD (TEQ). This standard is applicable since the gas temperature entering the first particulate matter control device is less than 400°F.

4.1.2 Regulatory Policy Requirements

In addition to the specific regulatory requirements, WCAI has been requested to perform both a human health and an ecological risk assessment, in accordance with EPA policy. As such, the performance test must include specific data gathering activities for use in the risk assessments. For this facility, those risk assessment data gathering activities are:

- Measure emissions of metals, including hexavalent chromium
- Measure emissions of specific volatile and semivolatile products of incomplete combustion (PICs)
- Measure emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF)
- Measure emissions of polychlorinated biphenyls (PCBs)
- Measure emissions of specific organochlorine pesticides
- Measure emissions of total volatile, semivolatile, and nonvolatile organics
- Determine the stack gas particle size distribution.

4.2 TEST OBJECTIVES AND APPROACH

The WCAI Performance Demonstration Test Plan has been prepared to provide comprehensive performance testing of the RF unit to demonstrate compliance with the applicable HWC MACT emission standards and to gather data for use in a site-specific risk assessment. The objectives of the PDTP are to demonstrate regulatory compliance with standards such as Destruction and Removal Efficiency (DRE) and particulate matter emission concentration (described above), while operating at "worst case" conditions processing normal feed materials, which have been augmented with metals, chloride, etc., to establish operating conditions that will be included in the permit.

4.3 TEST PROTOCOL

In order to accomplish the PDT objectives, (i.e., demonstrating that the unit will meet all applicable environmental performance standards) a single test condition representing "worst case" operations of minimum temperature, maximum combustion gas velocity (minimum residence time), and maximum spent activated carbon feed rate will be performed. The test will consist of at least three replicate sampling runs.

A summary description of the testing conditions, analytical parameters, and sampling methods follows:

4.3.1 Test Condition 1 ("Worst-Case" Operations)

Sampling and monitoring protocols that will be utilized while carrying out the performance test are summarized as follows:

- Spent Activated Carbon Feed total chlorine/chloride, elemental (C, H, N, O, S, moisture), volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Makeup Water volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Caustic feed to APC volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Cu, Co, Pb, Hg, Ag, Tl, Se, Ni, V, Zn)
- Scrubber Blowdown volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hq, Ni, Se, Aq, Tl, V, Zn)
- Wastewater Discharge to POTW volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Stack gas particulate, HCl, and Cl₂ using EPA Method 26A
- Stack gas target volatile organics using VOST, SW-846 Method 0030
- Stack gas target semivolatile organics and organochlorine pesticides using SW-846 Method 0010
- Stack gas PAHs and PCBs using a separate SW-846 Method 0010 sampling train
- Stack gas PCDD/PCDF using SW-846 Method 0023A
- Stack gas total volatile organics using SW-846 Method 0040
- Stack gas total semivolatile and nonvolatile organics using SW-846 Method 0010
- Stack gas metals (Al, Sb, As, Ba, Be, Cd, total Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, and Zn) using EPA Method 29
- Stack gas hexavalent chromium using SW-846 Method 0061
- Stack gas particle size distribution using a cascade impactor

- Stack gas CO and O₂ by permanently installed CEM according to the protocols in the Appendix to 40 CFR 63, Subpart EEE; Performance Specification 4B of 40 CFR 60, Appendix B.
- Stack gas total hydrocarbons (as propane) by temporary CEM according to EPA Method 25A and the protocols in the Appendix to 40 CFR 63, Subpart EEE.

4.4 FEED MATERIAL CHARACTERISTICS

4.4.1 Description and Composition of Spent Activated Carbon

Spent activated carbon is the only material treated in the RF. The current spent activated carbon profile data is presented in Tables 2-1 and 2-2. Actual spent activated carbon will be treated during the performance test. The spent activated carbon will be augmented, as discussed below, by the addition of POHCs (principle organic hazardous constituents), other organic surrogates, chlorine/chloride, and metals, as needed to achieve the test objectives. The expected composition of the spent activated carbon, as fed to the RF during the PDT, is summarized in Table 4-1.

4.4.2 Expected Constituent Levels in Natural Gas, Process Air, & Other Feed Streams In addition to the spent activated carbon, WCAI feeds natural gas to the burners in the multiple hearth furnace and afterburner, ambient air for combustion, and steam to assist in the reactivation process. Neither the ambient air, nor the steam are expected to contain regulated

constituents. Natural gas may contain low concentrations of metals, as shown in Table 2-3. These metals concentrations are so low that their contribution to emissions is negligible, and will not be considered further.

4.4.3 POHC Selection Rationale

The RF system exclusively treats spent activated carbon. A wide variety of organic contaminants may be present on the carbon, thus WCAI needs flexibility to treat carbon containing any RCRA Appendix VIII Hazardous Constituent or CAA HAP except for carbons classified as dioxin wastes (EPA Waste Codes F020, F021, F022, F023, F026, or F027) or containing TSCA-regulated levels of PCBs. The compounds to be used as POHCs during the PDT were selected for their ability to demonstrate the effectiveness of the unit in destroying compounds that are equal or more thermally stable, and are thus equal or more challenging to treat, than those currently found on the spent activated carbon. This provides assurance that the unit will be effective for all of the spent carbon contaminants.

EPA has developed a thermal stability ranking system based on laboratory studies conducted under low oxygen conditions in a non-flame environment. The EPA's thermal stability ranking system has divided organic compounds into seven thermal stability classes, with Class 1 compounds being the most stable, and Class 7 compounds being the least thermally stable. The EPA thermal stability ranking system is structured on the principle that if a combustion system is successful in destroying compounds in a particular class, it is appropriate to assume that other compounds within the same and lower classes will be destroyed at efficiencies equal to or greater than the efficiencies demonstrated.

A review of WCAI's spent activated carbon characterization information shows that compounds from several thermal stability classes, including Class 1, may be present on the spent activated carbon. WCAI has chosen to demonstrate the DRE of chlorobenzene (a Class 1 compound) and tetrachloroethene (a Class 2 compound) as the Principal Organic Hazardous Constituents during the Performance Demonstration Test. Chlorobenzene was chosen since it is a compound sometimes present on spent activated carbon received at the Parker Facility, thus its use is representative of normal operations. It is also relatively available and less hazardous to handle than other Class 1 compounds for spiking into the furnace during the PDT. Chlorobenzene is an aromatic compound and will also provide a source of organic chlorine to challenge the system during the performance test. WCAI believes that it's choice of chlorobenzene as a POHC represents the most significant challenge possible to the thermal destruction capabilities of the RF unit.

Tetrachloroethene is a per-chlorinated aliphatic compound that is also sometimes present on spent activated carbon received at the Parker Facility. It represents a significant source of organic chlorine to the system, and was chosen as a POHC so the test would include both an aromatic and an aliphatic compound.

Since the selected POHC compounds rank among the most difficult to destroy on the thermal stability ranking system and represent a variety of aromatic and aliphatic compounds, successful DRE demonstration should allow WCAI to treat spent activated carbon represented by the waste codes in the facility's most current RCRA Part A permit application. WCAI will

spike chlorobenzene and tetrachloroethene, as needed for both DRE demonstration and as sources of organic chlorine.

Samples of the spent activated carbon, collected before spiking, will be analyzed for POHC content. The spent activated carbon feed POHC analyses and carbon feed rates will be used to determine the feed rate of native POHC, if any. WCAI will utilize the services of a spiking contractor to provide additional POHC spiking. The spiked POHC will be prepared by the contractor for spiking directly into the furnace. The contractor's certification of composition of the spiking material and the spiking logs will be used to determine the POHC spike rate. Samples of the spiking material will be collected and archived. For the DRE calculation, the POHC feed rates will include the native POHC in the spent activated carbon feed and the spiked POHC.

4.4.4 Feed Material Specifications for the Test

While a wide variety of organic compounds can be on the spent activated carbon, and the specific constituents and concentrations vary over time according to the generator, the actual material fed to the RF is quite homogeneous. As stated earlier, organic compounds can account for up to 0.3 pounds per pound of dry carbon from a given generator. However, when added to other more lightly loaded carbons, and processed for feeding, the actual feed material is typically low in organics. Based on actual feed data from 1997 to 2002, the feed stream is predominantly carbon granules (~56 to 57 wt%, wet basis) which are wet from the slurrying and subsequent de-watering process (~43 wt% water). Average loading data indicated a range of 0.0038 to 0.0071 pounds of organic per pound of dry carbon, with an overall weighted average of 0.0055 pounds of organic per pound of dry carbon. On a wet (as fed) basis, the organic loading accounts for only about 0.2 to 0.4 wt% of the total feed. The variability in the feed is thus restricted to only this 0.2 to 0.4% of the total material.

For purposes of this test, the feed materials must support WCAI's need to demonstrate DRE for selected POHCs, demonstrate system removal efficiency (SRE) for representative metals, demonstrate maximum total chlorine/chloride feed rate, and gather emissions data for the risk assessment which are reasonably representative of the long-term operation of the RF system. The most desirable situation would be if carbon could be received and stockpiled from a number of sources such that the test feeds would contain sufficient quantities of POHCs, metals,

chlorine, and other organics for use during the test. Unfortunately WCAI has limited capacity for stockpiling materials, and cannot control when various generators send spent activated carbon for treatment. In light of this situation, WCAI will feed actual spent activated carbon available on-site, but will supplement it with POHCs, metals, chlorine, and other organics to meet the test objectives. Feed composition targets for the Performance Demonstration Test are shown in Table 4-1. Constituent feed rates and target process operating conditions for all three runs of the Performance Demonstration Test are shown in Table 4-2.

The POHCs, chlorobenzene and tetrachloroethene, will be spiked into the reactivation furnace in sufficient qualtities for DRE demonstration and to add chlorine to the feed.

Lead will be spiked as a representative metal for the determination of semivolatile metal SRE. Spiking will be sufficient to ensure detection in the stack gas sample, and so that metal feed rate extrapolation can be reliably accomplished.

Chromium will be spiked as a representative metal for the determination of low volatility metal SRE. Spiking will be sufficient to ensure detection in the stack gas sample, and so that metal feed rate extrapolation can be reliably accomplished.

Based on a review of the organic constituents commonly found on the spent activated carbon routinely treated at WCAI, and based on the relative availability and handling safety considerations of these materials, WCAI will spike a mixture of organic compounds into the reactivation furnace to act as surrogates for the various classes of compounds routinely treated. This will ensure that the carbon fed during the test contains representative types, and higher than normal quantities, of organic compounds, in addition to those native to the spent carbon, and gives the feed materials the potential to produce a range of representative combustion products so that the risk assessment emissions data from the Performance Demonstration Test will be appropriate. In order to meet this objective, the following organic surrogates will be added to the furnace, in addition to the POHCs:

- Toluene
- 1,1,1-Trichloroethane
- Naphthalene

• Ethylene glycol.

These compounds represent aromatics, aliphatics, chlorinated compounds, non-chlorinated compounds, oxygenated compounds, as well as both volatile and semivolatile organics.

The spiked materials will be pumped into the reactivation furnace at the point where spent activated carbon enters the furnace. This location will ensure that all spiked materials enter the RF with the carbon. An injection manifold will be constructed to accommodate the spike material feed lines.

As shown on Table 4-1, and discussed above, the typical spent activated carbon metals concentration ranges from about 13 to 19 mg/kg. Spiking during the test will increase this concentration to between 240 to 280 mg/kg (over a fifteen-fold increase). Similarly, the total organic concentration of typical spent activated carbon is between 0.2 to 0.4 wt%, while the carbon used for the test will have the total organic concentration increased to approximately 3.5 to 5 wt% (over a ten-fold increase). The use of actual spent activated carbon will provide a variety of compounds which will produce representative emissions, and these compounds and their relative concentration may vary during the test (just as in normal operations) due to the limited ability to stockpile and blend. However, the addition of metals and organic surrogates is so much in excess of the expected native concentrations on the carbon, that any variability will be overshadowed by the spiking. Thus the overall composition of the carbon feed will be quite homogeneous during the three runs of the Performance Demonstration Test. Further, WCAI expects no significant variation in process operating conditions due to variability of the native carbon constituents, thus providing appropriate data for permitting decisions.

4.4.4.1 Chloride Content

The data presented in Table 4-1 include the target total chlorine/chloride content for the performance test carbon feed stream. The typical spent activated carbon contains varying amounts of organic chlorine associated with chlorinated organics adsorbed onto the carbon.

To demonstrate maximum total chlorine/chloride feed rate during the performance test, WCAI intends to spike chloride sources into the reactivation furnace. The chloride will be provided by the POHCs (chlorobenzene and tetrachloroethene), as well as the other chlorinated organic surrogates.

4.4.4.2 Metals Content

The data presented in Table 4-1 includes target performance test metal feed rates for the spiked and native metals.

Two approaches will be used in establishing the metals operating limits, based on a review of expected spent activated carbon compounds and the HWC MACT provisions for establishing metals feed rate limits:

WCAI will meet mercury limits which utilize the "Maximum Theoretical Emission Concentration" (MTEC) concept, where it is conservatively assumed that all feed mercury is emitted from the system. Based on the results of the performance test, WCAI will calculate a maximum mercury feed rate which will ensure compliance with the MTEC, and will continuously monitor the mercury feed rate to ensure that the limit is complied with. Since this approach does not take credit for actual removal across the APC system, it is the most conservative assumption for the low levels of mercury in the feeds.

Lead will be spiked during the test to determine the system removal efficiency (SRE) for semivolatile metals. Chromium will be spiked during the test to determine the SRE for low volatility metals. These SRE values will be used as the basis for establishing permit feed rate limits for the semivolatile and low volatility metals. The native metals content of the spent activated carbon feed is expected to be similar to that shown in Table 2-1.

4.4.5 POHC, Organic Surrogate, and Metal Spiking

A spiking system will be used for POHC, organic surrogate, and metals addition to the spent activated carbon feed. Three separate spiking systems will be used: one for the mixture of POHCs, one for the organic surrogate mixture, and one for the metals dispersion. Each spiking system will consist of a variable speed, positive displacement pump, (or equivalent system) that will transfer the spiking materials from containers onto the spent activated carbon just as it enters the RF. An electronic scale will be provided for each spiking material system so that a weighed amount of material will be metered into the RF and quantified for each test run. Technical grade POHCs and organic surrogates will be used as needed. Lead will be spiked as a dispersion of lead oxide, while chromium will be added as a dispersion of strontium chromate (a solid hexavalent chromium compound). Specifications for the spiking materials will be

provided by the spiking contractor. Calculations showing that the planned POHC feed rates are adequate to demonstrate the required DRE are presented in Attachment D. Metals spiking rates have been selected to allow for detection in the stack gas so that a rational SRE value can be determined. Based on the SRE, the metal feed rates will be extrapolated upwards to attain metals feed rate limits for the permit. Metal spiking rate calculations and anticipated permit feed rate limits, derived from extrapolation are shown in Attachment D.

WCAI will utilize the services of a spiking contractor to provide each of the spiking materials and to perform spiking operations during the test. The contractor's certification of composition of the spiking materials and the spiking logs will be used to determine the respective spike rates. Samples of the spiking materials will be collected and archived.

4.5 OPERATING CONDITIONS

Planned process operating conditions and feed rates are summarized in Table 4-2.

4.5.1 System Operation to Achieve Steady State Conditions

Carbon in the multiple hearth section of the RF has a residence time of 42 minutes. Test materials must be fed to the system for at least one residence time to ensure that the system is operating on test material only. There is no other "hold up" of feeds in the system and there is little in the way of "surge capacity" in the APC system, thus there is little "conditioning" necessary to bring the system to steady state conditions. However, since most process parameters are being monitored on an hourly rolling average basis, the process should be operated at test conditions (including spiking) for at least one hour prior to beginning a test run in order to allow the rolling averages to be established.

"Steady State" conditions will be achieved by bringing the system to the desired test conditions, and then operating the system at the desired test conditions (including any spiking operations) for a period of at least one hour prior to the beginning of each test run. Normal process fluctuation are expected during the test periods, just as during normal operations. Typically fluctuations of 10 to 20 percent of the "steady state" process value are considered normal for thermal treatment systems, however some parameters may experience even greater fluctuations while still being considered acceptable. WCAI operations personnel and the test

manager will closely monitor operations during the test periods and will make any necessary determinations regarding the acceptability of process fluctuations.

Document Name: PerfDemoTestPlan~Rev0~Clean.doc

5.0 SAMPLING, ANALYSIS, AND MONITORING PROCEDURES

The following paragraphs discuss the planned sampling and analyses during the Performance Demonstration Test. The sampling procedures to be used during the performance test are located in Attachment A. Analytical methods are described in Attachment B. Quality Assurance and Quality Control procedures are described in the Quality Assurance Project Plan (QAPP) located in Attachment C.

5.1 SAMPLING LOCATIONS AND PROCEDURES

Sample collection points are shown on Figure 5-1. Sample collection locations, equipment, methods, and frequency are summarized in Table 5-1. The types of analyses planned for the performance test samples are outlined on Table 5-2. Analytical methods and procedures to be used for each sample are summarized in Table 5-3. Alternative methods may be used with the prior approval of the EPA.

5.1.1 Spent Activated Carbon Feed

Spent activated carbon feed samples will be collected during each test run as described in Attachment A. Spent carbon samples will be collected every 15 minutes and composited over the run. The feed samples collected will be analyzed for the parameters as indicated in Tables 5-2 and 5-3. Volatile organic analysis (VOA) samples will be collected from the run composite at the end of each run, and placed into a separate jar with minimum headspace. Analytical methods are presented in Attachment B.

5.1.2 Spiking Materials

POHC, Organic Surrogate, and Metals Spiking Feedstock Samples

POHC material will be pumped from portable containers into the RF, using metering pumps. The POHC injection point will be downstream of the point where spent activated carbon feed samples are collected. The POHC spiking rate will be determined using either flow meters or digital scales and logs of the differential weights at 10-minute intervals.

In addition to the POHCs, other organic surrogates will be spiked separately into the RF. These materials are being added to ensure that the test is conducted with a variety of organic compounds which have the potential to produce a wide variety of combustion products,

indicative of the range of materials to be treated at the WCAI Parker Facility. The organic surrogate spiking rate will be determined using either flow meters or digital scales and logs of the differential weights at 10-minute intervals.

Metals will be metered as necessary into the RF at an adjacent location to the POHC and organic surrogate spiking points. The metals will be supplied as aqueous solutions or as dispersions (aqueous or organic). The metal solution/dispersion injection point will be downstream of the ports where spent activated carbon feed samples are collected. The amount of each metal solution/dispersion spiked will be determined using either flow meters or digital scales and logs of the differential weights at 10-minute intervals.

WCAI will utilize the services of a spiking contractor to provide the POHCs, organic surrogates, and metals spiking materials and to conduct the spiking. The manufacturer's certification of composition of the spiking materials and the contractor's spiking logs will be used to determine the respective spike rates. Samples of the spiking materials will be collected once during the test and archived for analysis if required. The sampling procedure will be as described in Attachment A.

5.1.3 Process Makeup and Residue Streams Makeup Water, Caustic, Scrubber Blowdown, and POTW Discharge Samples

Samples of the makeup water, caustic, scrubber blowdown, and POTW discharge streams will be collected during each test run as described in Attachment A. Samples of the makeup water and caustic will be collected once during the test. Samples of the scrubber blowdown and POTW discharge will be collected every 30 minutes during each test run. VOA samples of wet scrubber blowdown and POTW discharge will be collected and handled as discrete samples. VOA samples will be composited in the laboratory immediately prior to analysis. Grab samples of the scrubber blowdown and POTW discharge for the other analyses will be composited in the field to form one sample per run. Analytical methods are presented in Attachment B.

5.1.4 Stack Gas

5.1.4.1 Stack Gas Volatile Organics

A Volatile Organic Sampling Train (VOST) (SW-846 Method 0030), will be used to determine the stack gas emissions of the POHCs (chlorobenzene and tetrachloroethene) for DRE determination. Four pairs of VOST tubes will be collected during each sampling run, but only

three will be analyzed. The fourth tube pair will serve as an archive set in the case of breakage during shipment or laboratory handling. Attachment A presents a description of the stack gas VOST sampling method. The VOST tubes will be analyzed using SW-846 Method 8260.

In addition to the POHCs, the VOST samples will be analyzed for other volatile organic compounds. These analyses will be used to assess the emissions of volatile organic compounds for use in the risk assessment. The target volatile organic compounds are listed in Table 5-4. Analyses will be performed using SW-846 Method 8260. In addition to the target analyte list, analyses will include identifying non-target analyte peaks, which are referred to as tentatively identified compounds (TICs). A discussion of TIC identification and quantitation is presented in the QAPP (Attachment C). Analytical methods are presented in Attachment B.

5.1.4.2 Stack Gas Particulate, HCl, and Cl₂

The stack gas will be sampled for particulate, HCl, and Cl₂ according to EPA Method 26A. The sampling procedure is described in Attachment A. Particulate filters will be analyzed per EPA Method 5 procedures. Impinger solutions will be analyzed for chloride ion per SW-846 Method 9057 to determine the emissions of HCl and Cl₂. Analytical methods are presented in Attachment B.

5.1.4.3 Stack Gas Multiple Metals

Stack gas multiple metals will be collected using an EPA Method 29 sampling train according to the procedure in Attachment B. Metals will be analyzed by Inductively Coupled Plasma Spectroscopy/Mass Spectroscopy (ICP-MS) using SW-846 Method 6020. Mercury will be analyzed using Cold Vapor Atomic Absorption Spectroscopy (CVAAS) using SW-846 Method 7470. Target metal analytes are shown in Table 5-5.

5.1.4.4 Stack Gas Hexavalent Chromium

Stack gas hexavalent chromium samples will be collected using an SW-846 Method 0061 sampling train, as described in Attachment A. Analysis is according to SW-846 Method 7199, as described in Attachment B.

5.1.4.5 Stack Gas Semivolatile Organics, PAHs, Organochlorine Pesticides, and PCBs The stack gas will be sampled to determine the emissions of the semivolatile organic compounds, for use in the risk assessment. Stack gas will be sampled for target semivolatile organic compounds (SVOCs), semivolatile TICs, polyaromatic hydrocarbons (PAHs),

organochlorine pesticides, and polychlorinated biphenyls (PCBs) using two separate SW-846 Method 0010 sampling trains. The extract from the analytical preparation of each Method 0010 sampling train will be split for analysis as follows:

Train 1: one portion for SVOC analysis by SW-846 Method 8270 [gas chromatograph/mass spectrometry (GCMS)], a second portion for organochlorine pesticides analysis by SW-846 Method 8081 (GC), and a final portion retained as an archive in case any of the analyses need to be repeated.

Train 2: one portion for high resolution gas chromatograph/high resolution mass spectrometry (HRGC/HRMS) PAH analysis, a second fraction for HRGC/HRMS analysis of PCBs, and a final portion retained as an archive in case any of the analyses need to be repeated.

Prior to testing, the XAD-2 resin of each train will be spiked with sampling surrogates of each target analyte group, as an added QC step. The sampling procedure is described in Attachment A.

The respective target SVOC, PAH, OC Pesticide, and PCB analytes for the Method 0010 samples are presented in Tables 5-6, 5-7, 5-8, and 5-9. In addition to the SVOC target analyte list, analyses will include identifying non-target analyte peaks (TICs) based on the nearest internal standard and library search.

5.1.4.6 Stack Gas Method 0023A (Dioxins and Furans)

Stack gas samples will be collected for PCDD/PCDF using a SW-846 Method 0023A sampling train. The sampling procedure is described in Attachment A. Analysis of PCDD/PCDF is conducted by high resolution GC/MS according to SW-846 Method 8290, and described in Attachment B. PCDD/PCDF target analytes are shown in Table 5-10.

5.1.4.7 Stack Gas Total Semivolatile and Nonvolatile Organics

For the risk assessment analysis, the performance test program includes determining the Total Organic Emissions (TOE) using the procedures in "<u>Guidance for Total Organics</u>" EPA/600/R-96/036, March 1996. The stack gas will be sampled for total semivolatile organic compounds (Boiling Points from 100°C to 300°C) and nonvolatile organic compounds (Boiling Points greater than 300°C) using a separate SW-846 Method 0010 sampling train. The sampling method is

described in Attachment A. No isotopically labeled sampling surrogates will be spiked to the XAD-2 resin used in this sampling train. The dichloromethane extracts of the pooled components of the sampling train will be used to determine the Total Chromatographable Organics (TCO) using Gas Chromatography/Flame Ionization Detector (GC/FID). The marker compounds are n-heptane and n-heptadecane because their boiling points are 98°C and 302°C, respectively.

The nonvolatile organics will be determined by a gravimetric procedure known as GRAV from the same pooled dichloromethane extract of the Method 0010 train components as the semivolatile organic components. The analytical methods are described in greater detail in Attachment B.

5.1.4.8 Stack Gas Total Volatile Organics

For the risk assessment analysis, stack gas will be sampled for total volatile organic compounds (Boiling Points <100°C). Tedlar bag samples of stack gas will be collected and measured for total volatile organics by field gas chromatograph (GC) according to SW-846 Method 0040. The SW-846 Method 0040 sampling procedure is described in Attachment A. Emphasis will be made on the identification of n-C₁ - C₇ hydrocarbons. In addition, the volatile organics collected in the condensate trap of the SW-846 Method 0040 will be analyzed by purge and trap GC/FID. The analytical procedure is described in Attachment B.

5.1.4.9 Particle Size Distribution

The risk assessment analysis requires the collection of particle size distribution data on the stack gas particulate emissions. A cascade impactor will be used to determine the particle size distribution. The cascade impactor will be operated at a single point of average velocity within the stack. The procedure to be used is described in Attachment A. Analysis of the cascade impactor filter substrates is the same as that used for particulate matter determination in Method 5.

WCAI has previously collected PSD information and is submitting this data set in lieu of testing. Refer to Section 9.0 and Attachment G for the PSD data.

5.2 ANALYTICAL PROCEDURES

Attachment B presents a description of the analytical methods to be used during the performance test.

5.3 MONITORING PROCEDURES

During the performance test, the stack gas will be continuously monitored by installed CEMS using the following procedures:

- Stack gas carbon monoxide by non-dispersive infrared (NDIR) analyzer
- Stack gas oxygen by paramagnetic analyzer

CEMS performance testing will be completed prior to conducting the PDT. Stack gas CO and O₂ monitors will be operated during the PDT according to the protocols of the Appendix to 40 CFR 63 Subpart EEE, and Performance Specification 4B of 40 CFR 60 Appendix B. The stack gas monitors will be checked daily during the performance test for calibration stability in accordance with WCAI's standard operating procedures.

Also during the performance test, the stack gas will be continuously monitored for total hydrocarbons, as propane (EPA Method 25A) using a portable monitor supplied by the stack testing contractor.

5.4 QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES

Attachment C contains a Quality Assurance Project Plan for the Performance Demonstration Test.

5.5 EMISSION VALUES FOR USE IN RISK ASSESSMENTS

Many of the emissions determinations being made during the PDT are for risk assessment purposes rather than to demonstrate compliance with specific regulatory performance standards. WCAI suggests that the average emission rate determined from the PDT data be used for assessing risks, since the RF will be operated at "worst case" conditions during the PDT. It should also be noted that while the target analyte lists are extensive, approved and validated stack gas sampling and analytical methods are not currently available for several compounds identified as COPCs (Compounds of Potential Concern) in the risk assessment.

WCAI will estimate the emission rate of these compounds, by assuming that they are present in the spent activated carbon fed during the PDT at the "typical" concentration shown in the feedstream characterization (Table 2-2), and applying the average DRE determined for the test.

Document Name: PerfDemoTestPlan~Rev0~Clean.doc

6.0 TEST SCHEDULE

6.1 PLANNED TEST DATE

Following approval of the test plan, WCAI needs to accumulate carbon necessary for conducting the test, and needs to schedule the delivery of spiking materials, and consider the availability of sampling and analytical contractors. The RF unit is currently operating, thus no startup or shakedown period is required, however WCAI may conduct limited preliminary testing prior to conducting the formal PDT. The pre-test will involve operating the RF system at the same conditions proposed for the PDT. The scope of any pre-test sampling and analysis will be a subset of the PDT sampling and analyses. Depending on the results of the initial pretest, additional pretests may be performed. The preliminary testing will be used to confirm that the proposed PDT conditions are attainable and appropriate for meeting the objectives of the testing program. Preliminary testing will also allow WCAI and its contractors to identify and correct any difficulties with the sampling, analytical, or QA/QC procedures specified in this test plan.

Currently WCAI believes that, depending on contractor and consultant schedules, it can be ready to conduct preliminary testing within 8 to 10 weeks of PDTP approval, and to conduct the PDT within 5 to 6 weeks after completion of the pre-test. WCAI will notify EPA at least 30 days before the planned date for starting the Performance Demonstration Test. The performance testing will be conducted over a period of approximately 5 consecutive days.

Day 1 – Equipment setup and system readiness confirmation

Day 2 - Test Run 1

Day 3 - Test Run 2

Day 4 – Test Run 3

Day 5 – Contingency/equipment demobilization.

Each of the three test run days are planned to be identical. A detailed daily schedule for these three days is presented in Table 6-1.

6.2 DURATION OF EACH TEST

The performance test will consist of three replicate sampling runs at a single test condition. The RF will be fed test materials 1 to 2 hours before a sampling run, and will be stabilized at test

conditions at least 1 hour before a sampling run. This will establish steady operation at process test conditions. Each test run is anticipated to have a duration of 4 to 6 hours, including port changes.

6.3 QUANTITY OF SPENT CARBON TO BE REACTIVATED

Spent activated carbon will be fed to the RF for up to an estimated 6 to 9 hours per day over a period of 3 testing days, assuming no interruptions. Allowing for 12 hours of spent activated carbon feed each test day (as a contingency), plus one extra contingency day (12 additional hours), the approximate amount of spent activated carbon used for testing purposes is 144,000 pounds.

6.4 DETAILED SCHEDULE OF PLANNED TEST ACTIVITIES

A planned schedule for a typical testing day is presented in Table 6-1.

6.5 PRELIMINARY TESTING

WCAI may conduct preliminary testing prior to the formal Performance Demonstration Test. The purpose of any such preliminary testing will be to verify that the planned Performance Demonstration Test operating conditions, as well as the planned spiking, sampling, and/or analytical methods are appropriate and yield acceptable results. A further goal of preliminary testing is to ensure that any test team interaction, coordination, or logistics issues are addressed prior to conducting the formal test.

Tables 4-1 and 4-2 show the anticipated feed materials, compositions, feed rates, and operating conditions planned for the test. Preliminary testing, if conducted, will be targeted to achieve the same conditions as shown in Tables 4-1 and 4-2. Process and emissions sampling and analysis for the Performance Demonstration Test are summarized in Tables 5-1, 5-2, and 5-3. Preliminary testing, if conducted, will utilize all, or a portion, of these same sampling and analytical methods.

7.0 OPERATING PERMIT OBJECTIVES

Based on the results of the performance test, WCAI will propose operating limits for the RF system that assure continuing compliant performance. Parameters will be established from the operating conditions demonstrated during the test; established regulatory requirements; manufacturer's recommendations; good operating practice, or on the results of the risk assessments. If the required performance objectives of the test are achieved, the RF system should be allowed to operate under the conditions proposed in this section.

Table 7-1 summarizes the anticipated operating limits. In order to achieve the desired conditions and demonstrate operations at the limits shown in Table 7-1, the interlock setpoints for certain operating parameters must be set somewhat wider during testing periods. The recommended interlock setpoints during testing periods are presented in Table 7-2. The following sections present a discussion of each parameter.

7.1 CONTROL PARAMETERS

WCAI anticipates limits on a number of operational control parameters which must be maintained as an indication that the RF system will continue to operate in compliance with all regulatory standards. Control parameters are grouped into categories:

- Group A1 parameters are continuously monitored and recorded, and are interlocked with the automatic waste feed cutoff system. Group A1 parameter limits are established from test operating data, and are used to ensure that system operating conditions are equal to or are more rigorous than those demonstrated during the test. During the test periods (pretest and performance test), interlocks for Group A1 parameters will be operational, but will be set at values which will allow the desired operating limits to be demonstrated.
- Group A2 parameters are continuously monitored and recorded, and are interlocked with the automatic waste feed cutoff system. Group A2 parameter limits are established based on regulatory requirements rather than on the test operating conditions, e.g., the maximum stack CO concentration. Interlocks for Group A2 parameters will be operational during the test periods, without modification to the interlock setpoints.
- Group B parameters are continuously monitored and recorded, but are not required to be interlocked with the automatic waste feed cutoff system. Operating records are required to ensure that established limits for these parameters are not exceeded. The Group B parameter limits are established based on the operation of the system during the test.

 Group C parameters are continuously monitored and recorded, but are not required to be interlocked with the automatic waste feed cutoff system. Group C parameter limits are based on manufacturer's recommendations, operational safety, and good operating practice considerations rather than on the test operating conditions, e.g., the minimum packed bed scrubber pressure differential.

7.2 DEVELOPMENT OF PERMIT LIMITS

The following sections describe how each control parameter limit will be established.

In addition to establishing specific operating limits, WCAI has limits on the types of waste which can be accepted in the RF. Since WCAI will demonstrate performance while treating a Class 1 (most thermally stable) compound, it is expected that WCAI will be permitted to treat spent activated carbon having EPA waste codes as represented in the facility's most recent RCRA Part A permit application. Specific prohibitions are expected for wastes containing greater than 50 mg/kg of PCBs and those wastes listed with the waste codes F020, F021, F022, F023, F026 or F027.

7.2.1 Group A1 Parameters

Group A1 parameter limits are based on the results of the performance test. The following parameters are proposed as Group A1 parameters for the RF system.

7.2.1.1 Maximum Spent Carbon Feed Rate

The performance test will be conducted in order to demonstrate the maximum feed rate of spent activated carbon. The spent activated carbon feed rate will be monitored on a continuous basis. The maximum allowable spent activated carbon feed rate will be established from the mean of the average feed rates demonstrated during each run of the performance test. The feed rate limit will be monitored as 1-hour block average.

7.2.1.2 Minimum Afterburner Temperature

The performance test will be conducted to demonstrate the minimum afterburner temperature with maximized combustion gas flow (minimum residence time), since these conditions are least favorable for DRE. Organic emissions are also being measured for risk assessment purposes since it is expected to represent worst case conditions for organic emissions. Combustion gas temperature will be monitored in the afterburner on a continuous basis. Based on successful

demonstration of DRE during the performance test, the minimum temperature limit will be based on the average of the minimum hourly rolling average temperature values demonstrated during each run of the performance test. The permit limit is expected to be administered as an hourly rolling average.

7.2.1.3 Minimum Venturi Scrubber Differential Pressure

The performance test will be conducted to demonstrate the minimum venturi scrubber differential pressure. Venturi scrubber differential pressure will be monitored on a continuous basis. Based on successful demonstration of particulate control during the performance test, the minimum venturi scrubber differential pressure limit will be based on the mean of the minimum hourly rolling average values demonstrated during each run of the performance test. The permit limit is also expected to be an hourly rolling average value.

7.2.1.4 Minimum Quench/Venturi Scrubber Recycle Liquid Flow Rate

The performance test will be conducted to demonstrate the minimum quench/venturi scrubber recycle flow and maximum stack gas flow, thus establishing a *de facto* minimum liquid to gas ratio. Quench/Venturi scrubber flow and stack gas flow will both be monitored on a continuous basis. Based on successful demonstration during the performance test, the minimum quench/venturi scrubber recycle liquid flow rate limit will be based on the mean of the hourly rolling average values demonstrated during each run of the performance test.

7.2.1.5 Minimum Packed Bed Scrubber pH

The performance test will be conducted to demonstrate the minimum packed bed scrubber pH at maximum total chlorine/chloride feed rate. Scrubber pH will be monitored on a continuous basis. Based on successful demonstration of HCl and Cl₂ control during the performance test, the minimum packed bed scrubber pH limit will be based on the mean of the minimum hourly rolling average pH values demonstrated during each run of the performance test. The permit limit will be administered as an hourly rolling average.

7.2.1.6 Minimum Packed Bed Scrubber Recycle Liquid Flow Rate

The performance test will be conducted to demonstrate the minimum packed bed scrubber recycle flow rate and maximum stack gas flow, thus establishing a *de facto* minimum liquid to gas ratio. Packed bed scrubber recycle flow and stack gas flow will both be monitored on a continuous basis. Based on successful demonstration of HCI and Cl₂ control during the performance test, the minimum packed bed scrubber recycle liquid flow rate limit will be based

on the mean of the hourly rolling average values demonstrated during each run of the performance test.

7.2.1.7 Minimum Scrubber Blowdown Flow Rate

The performance test will demonstrate minimum scrubber blowdown flow rate, in order to demonstrate worst case conditions for solids buildup in the scrubbing system. In order to conserve water, WCAI recycles most of the liquid from the air pollution control system. However, in order to prevent the buildup of dissolved solids in the recycled water, a certain amount of the water must be purged (or blown down) from the system. As water is purged from the system, fresh makeup water is added. The minimum scrubber blowdown flow rate limit will be based on the mean of the hourly rolling average values demonstrated during each run of the performance test.

7.2.1.8 Minimum WESP Secondary Voltage

Although the HWC MACT regulations do not require any indicator of performance in an electrically enhanced emissions control device, WCAI believes that it is appropriate to establish a performance indicator. Accordingly, WESP secondary voltage (expressed as KVDC) will be used as the indicator of continuing WESP performance. The minimum value will be established from the mean of the minimum hourly rolling average secondary voltage values demonstrated during each run of the performance test. The secondary voltage value will be based on an hourly rolling average.

7.2.1.9 Maximum Combustion Gas Velocity (Stack Gas Flow Rate)

The stack gas flow rate (expressed as actual cubic feet per minute) will be used as the indicator of combustion gas velocity. The maximum stack gas flow rate will be established from the mean of the maximum hourly rolling average stack gas flow rates demonstrated during each run of the performance test. The combustion gas velocity is proposed as an hourly rolling average limit to dampen normal variations in flow.

7.2.2 Group A2 Parameters

Group A2 parameter limits are interlocked with the automatic waste feed cutoff system, but are not based on the results of the performance test. The following parameters are proposed as Group A2 parameters for the RF system.

7.2.2.1 Maximum Stack Gas CO Concentration

The maximum hourly rolling average stack gas CO concentration will be maintained at or below 100 ppmv corrected to 7% oxygen (dry basis) during the PDT. WCAI expects to obtain a permit limit specifying a maximum allowable stack gas carbon monoxide concentration of 100 ppmv hourly rolling average corrected to 7% oxygen, dry basis, based on the regulatory limit.

7.2.3 Group B Parameters

7.2.3.1 Maximum Chlorine/Chloride Feed Rate

WCAI will feed chlorine/chloride at the maximum anticipated rate during the performance test. Assuming that the stack gas HCI/Cl₂ concentration meets the applicable standard, the final limit for total chlorine/chloride feed rate should be expressed as a 12-hour average based on the mean of the chlorine/chloride feed rate values demonstrated during each run of the test.

During routine operations, WCAI has found the chlorine feed rate to be somewhat variable based on observed caustic use in the scrubbing system. Further, accurate chlorine feed concentration data on spent activated carbon is difficult to obtain and relate to a "real time" measure of chlorine feed rate. WCAI therefore proposes to demonstrate continuing compliance with the chlorine feed rate limit by monitoring the change in total dissolved solids in the RF scrubber blowdown.

WCAI has performed an evaluation of the total amount of chlorine feed as it relates to TDS in the scrubber blowdown. This evaluation demonstrates that compliance with the facility's existing wastewater discharge limit of delta 1400 mg/L for the rise in total dissolved solids (TDS) can be used to ensure compliance with the facility's proposed 12-hour rolling average limit for the feed rate of total chlorine and chloride. Attachment F contains a summary of the evaluation of chlorine feed rate versus TDS, and presents calculations to support the conclusions. The following presents a brief summary of the evaluation.

Sodium hydroxide (NaOH) is added to the recirculated scrubber solutions for the quench/venturi and packed bed scrubbers to neutralize and control the emissions of hydrogen chloride (HCI) from the carbon reactivation furnace. HCI is readily dissolved in water, where chloride ions react with sodium ions to form salt.

 $HCl + NaOH \rightarrow NaCl + H_2O$

The NaCl formed as a result of this reaction manifests itself as dissolved solids in the scrubber liquid. The pH of the recirculated scrubber solutions for the quench/venturi and packed bed scrubbers are controlled to make sure a sufficient amount of sodium hydroxide is continuously added to the scrubber water for reaction with the hydrogen chloride.

The amount of sodium chloride formed is dependent upon the chloride content and the feed rate of the spent activated carbon. At a chloride feed rate equal to that proposed as the permit limit (and as will be demonstrated during the test) the increase in TDS in WCAI's water discharge is slightly in excess of it's waste water discharge limit. Thus, compliance with the waste water TDS discharge restrictions ensures compliance with the proposed chlorine feed rate limit.

7.2.3.2 Maximum Mercury Feed Rate

Due to the low amounts of mercury expected in the spent activated carbon, WCAI will comply with the mercury standard by calculating and complying with a 12-hour rolling average Maximum Theoretical Emission Concentration (MTEC), conservatively assuming no mercury removal across the APC system. The MTEC is complied with as a maximum mercury feed rate limit. This limit will be calculated from the performance test data by using the stack gas flow rate and oxygen concentration, and the maximum allowable stack gas mercury concentration based on the HWC MACT regulations. The feed rate limit is determined assuming that all mercury is emitted.

7.2.3.3 Maximum Semivolatile Metals Feed Rate

WCAI will determine the feed rate and emission rate of the semivolatile metals cadmium and lead during the performance test. A maximum semivolatile metal feed rate will be established for the total combined cadmium and lead feed rates as a 12-hour rolling average. This limit will be based on the mean of the average semivolatile metals feed rates, and the emission rate of semivolatile metals, demonstrated during each run. The total semivolatile metal feed rate during the test will be supplemented by spiking of lead as needed. The test results will be extrapolated upwards to the allowable HWC MACT limit, using the equations presented in Section 7.2.5 below.

7.2.3.4 Maximum Low Volatility Metals Feed Rate

WCAI will determine the feed rate and emission rate of the low volatility metals arsenic, beryllium, and chromium during the performance test. A maximum low volatility metal feed rate will be established for the total combined arsenic, beryllium, and chromium feed rates as a 12-hour rolling average. This limit will be based on the mean of the average low volatility metals feed rates, and the emission rate of low volatility metals, demonstrated during each run. The total low volatility metal feed rate during the test will be supplemented by spiking of chromium as needed. The test results will be extrapolated upwards to the allowable HWC MACT limit, using the equations presented in Section 7.2.5 below.

7.2.4 Group C Parameters

Group C parameters are determined from information other than the test results. These parameters and how the limits are to be established are described below.

7.2.4.1 Minimum Packed Bed Scrubber Pressure Differential

A minimum pressure drop across the packed bed scrubber will be established as a limit, based on past operating experience.

7.2.5 Extrapolation of Metals Feed Rate Limits

As allowed by the HWC MACT regulations, WCAI wishes to feed representative metals to the RF system during the PDT and to establish feed rate limits by extrapolating upward from the test results. WCAI proposes to feed lead and chromium at only a fraction of the maximum desired permit feed rates during the test. These metals are representative of the semivolatile and low volatility metal groups, respectively. Since these metals are representative of the metal volatility groups, the test data can be used to calculate a system removal efficiency (SRE) for each of these metals which can then be applied to their respective metal volatility group. System removal efficiency will be calculated using the following equation:

$$SRE = \left[1 - \frac{\dot{m}_{i,out}}{\dot{m}_{i,in}}\right] \times 100\%$$

where:

 \dot{m}_{iin} = mass feed rate of metal i.

 $\dot{m}_{i,out}$ = mass emission rate of metal i.

The calculated system removal efficiency for each metal volatility class can be used to establish feed rate limits for each group using the following equation:

$$\dot{m}_{i,in,\text{max}} = \frac{\dot{m}_{i,out,MACT}}{\left(1 - \frac{SRE}{100}\right)}$$

where:

 $\dot{m}_{i.in.max}$ = maximum allowable feed rate of metal i.

 $\dot{m}_{i,out\,MACT}$ = mass emission rate of metal i at MACT regulatory limit.

If necessary, the test data can also be used to establish appropriate risk-based feed rate limits for other individual metals of concern based on their volatility and risk-based emission limits.

Metals will be added to the spent activated carbon feed as a stable dispersion of finely divided metal-containing solids. Lead will be fed in its oxide form. Chromium will be fed in the form of strontium chromate, which is a solid hexavalent chromium compound. Metals or their oxides are the most common form of the metals expected to be fed to the process, and were thus chosen as the feed form for the test. Chromium is being fed in a hexavalent form to produce a worst case feed for the risk assessment testing.

The purpose of feeding only two metals, and for upward extrapolation from the test results, is to minimize the number and quantity of metals added to the RF solely for the purpose of demonstrating the maximum desired feed rate. WCAI has examined its spent activated carbon characterization data (shown in Table 2-1) and has determined a desired feed rate limit for each metal volatility group. The proposed metal feed rates for the PDT are approximately one third to one half of these limits. This level of spiking was chosen for the following reasons:

- Spiking at less than the maximum desired feed rate decreases the emissions associated solely with the PDT.
- Spiking at approximately one third to one half of the desired feed rate minimizes the degree to which test results will need to be extrapolated, thus eliminating inaccuracies which might be associated with a larger degree of extrapolation.

 The anticipated emissions resulting from the planned spiking rates should be detectable using the specified sampling and analytical methods so that an accurate system removal efficiency for both metals can be determined. (See calculations in Attachment D).

Document Name: PerfDemoTestPlan~Rev0~Clean.doc

8.0 TEST REPORT

The final Performance Demonstration Test report will be submitted to EPA within 90 days after completion of the test. The final report will be a comprehensive test report that contains a discussion of the test objectives; sampling, analysis, and QA/QC activities performed; summaries of process operating conditions; the results of the test determinations; and proposed permit conditions. The planned outline of the report is shown in Figure 8-1.

Specific determinations to be made based on the test results include, but are not limited to the following:

8.1 REGULATORY COMPLIANCE DETERMINATIONS

8.1.1 Destruction and Removal Efficiency for the Designated POHCs.

The DRE determination will be made using the following equation:

$$DRE = \left[1 - \frac{W_{out}}{W_{in}}\right] \times 100$$

where:

DRE = Destruction and Removal Efficiency (%)

 W_{in} = Mass feed rate of POHC

 W_{out} = Stack gas mass emission rate of POHC.

8.1.2 Particulate Matter Emission Concentration

The particulate matter emission concentration will be determined in terms of milligrams of filterable particulate matter per dry standard cubic meter of stack gas, corrected to 7 percent oxygen by volume, dry basis.

8.1.3 Metal Emission Concentrations

The stack gas emission concentration of mercury, semivolatile metals (total combined cadmiun and lead), and low volatility metals (total combined arsenic, beryllium, and chromium) will be

determined in terms of micrograms of metal per dry standard cubic meter of stack gas, corrected to 7 percent oxygen by volume, dry basis.

8.1.4 System Removal Efficiency for Specific Metal Groups

In addition to determining the metal emission concentrations, for purposes of extrapolating metal emission rates and feed rates upwards to determine the appropriate metal feed rate limits, WCAI will determine the System Removal Efficiency (SRE) of Semivolatile Metals (lead and cadmium combined) and of Low Volatility Metals (arsenic, beryllium, and chromium combined). The formula for SRE is analogous to that used for DRE:

$$SRE = \left[1 - \frac{M_{out}}{M_{in}}\right] \times 100$$

where:

SRE = System Removal Efficiency (%)

 M_{in} = Mass feed rate of metal (or metal group)

 M_{out} = Stack gas mass emission rate of metal (or metal group).

8.1.5 Hydrogen Chloride and Chlorine Emission Concentration

The total combined stack gas emission concentration of hydrogen chloride and chlorine will be determined in terms of parts per million hydrogen chloride equivalents by volume, corrected to 7 percent oxygen by volume, dry basis.

8.1.6 Polychlorinated Dibenzo-p-Dioxin and Polychlorinated Dibenzofuran Emission Concentration

The stack gas emission concentration of PCDD/PCDF will be determined in terms of nanograms of 2,3,7,8-TCDD toxic equivalents (TEQ) per dry standard cubic meter of stack gas, corrected to 7 percent oxygen by volume, dry basis.

8.1.7 Carbon Monoxide Emission Concentration

The concentration of carbon monoxide in the stack gas will be continuously monitored and reported in terms of parts per million by volume, corrected to 7 percent oxygen by volume, dry basis.

8.1.8 Total Hydrocarbon Emission Concentration

During each test run where DRE is being determined, the stack gas total hydrocarbon emission concentration will also be determined in terms of parts per million propane by volume, corrected to 7 percent oxygen by volume, dry basis.

8.2 OTHER STACK GAS EMISSION DETERMINATIONS

In addition to the regulatory compliance emission determinations, the following stack gas emission determinations will be made:

Stack Gas Parameter	Units
Stack gas flow rate	dscfm, dscm/min
Stack gas velocity	ft/s, m/s
Stack gas temperature	°F, °C
Stack gas moisture content	vol%
Stack gas oxygen concentration	vol%, dry
Stack gas carbon dioxide concentration	vol%, dry
Stack gas dry molecular weight	lb/lb-mol
Particulate matter emission rate	lb/h, g/s
Hydrogen chloride emission rate	lb/h, g/s
Chlorine emission rate	lb/h, g/s
Metals emission rates (Al, Sb, As, Ba, Be, Cd, Cr (total),	lb/h, g/s
Cr (VI), Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)	
PCDD/PCDF emission rate (each 2,3,7,8-substituted	lb/h, g/s
congener, and total TEQ)	
Speciated volatile organic compound emission rate (each target analyte plus each TIC)	lb/h, g/s
Speciated semivolatile organic compound emission rate	lb/h, g/s
(each target analyte plus each TIC)	, g. c
Total volatile organics emission rate (subset of TOE)	lb/h, g/s
Total semivolatile organics emission rate (subset of TOE)	lb/h, g/s
Total nonvolatile organics emission rate (subset of TOE)	lb/h, g/s
PCB emission rate (each target analyte)	lb/h, g/s
Organochlorine pesticides emission rate (each target	lb/h, g/s
analyte)	
PAH emission rate (each target analyte)	lb/h, g/s
Particle size distribution	Mass fraction of various particle size ranges

8.3 FEED AND EFFLUENT DETERMINATIONS

The following feed material and effluent determination will be made:

Feed Parameter	Units
Spent carbon feed rate	lb/h, kg/h
Spent carbon chlorine/chloride concentration	mg/kg
Spent carbon metals concentration (Al, Sb, As, Ba, Be,	mg/kg
Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)	
Spent carbon POHC concentration	mg/kg
Spent carbon volatile organic concentration	ug/kg
Spent carbon semivolatile organic concentration	ug/kg
Makeup water metals concentration (Al, Sb, As, Ba, Be,	mg/l
Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)	
Makeup water volatile organic concentration	ug/l
Makeup water semivolatile organic concentration	ug/l
Caustic solution metals concentration (Al, Sb, As, Ba, Be,	mg/l
Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)	
Caustic solution volatile organic concentration	ug/l
Caustic solution semivolatile organic concentration	ug/l
Total feed rate of chlorine/chloride	lb/h
Total feed rate of metals (Al, Sb, As, Ba, Be, Cd, Cr, Co,	lb/h
Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)	
Total feed rate of each POHC	lb/h

Effluent Parameter	Units
Scrubber blowdown volatile organic concentration	ug/kg
Scrubber blowdown semivolatile organic concentration	ug/kg
Sscrubber blowdown metals concentration (Al, Sb, As, Ba,	mg/l
Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)	
POTW discharge volatile organic concentration	ug/l
POTW discharge semivolatile organic concentration	ug/l
POTW discharge metals concentration (Al, Sb, As, Ba, Be,	mg/l
Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)	

8.4 PROCESS DATA

The following process data points will be continuously monitored and recorded. One minute values for each parameter listed will be presented in an appendix to the report, while the average, minimum, and maximum values recorded during each run will be summarized within the body of the report.

Process Parameter	Units
Spent carbon feed rate	lb/h
Afterburner temperature	°F
Venturi scrubber pressure differential	in. w.c.
Quench/Venturi scrubber liquid flow rate	gpm
Packed bed scrubber pH	pH
Packed bed scrubber liquid flow rate	gpm
Packed bed scrubber pressure differential	in. w.c.

Process Parameter	Units
Scrubber blowdown flow rate	gpm
WESP secondary voltage	kVDC
Stack gas flow rate	acfm

8.5 REPORTING OF INTERMEDIATE RESULTS

EPA has requested that WCAI report certain intermediate data to EPA during the test and prior to submittal of the final test report. WCAI will comply with those requests as follows.

8.5.1 Daily Process Data

WCAI will provide EPA's on-site observer with either computer disks or hard copy printouts (at the option of the EPA observer) representing the one-minute updated process operating data for the parameters described in Table 7-1. These data, from the previous day's test activities, will be provided at the beginning of the following day. Prior to the first day of testing, WCAI will provide the previous day's data for these same monitors, as well as their most recent calibration results.

8.5.2 Unfavorable Performance Demonstration Test Results

If WCAI determines, during the course of compiling the Performance Demonstration Test data, that any of the test emission targets were not met, of if other unfavorable results have occurred, EPA will be notified as soon as practical following WCAI's confirmation of such an occurrence. WCAI and EPA will work together to develop appropriate corrective actions to resolve any such situation.

8.5.3 Modification of Planned Performance Test Operating Conditions

Should preliminary testing of the RF system, or other information lead WCAI to propose a change of target process operating conditions or to modify the test protocol after approval of the test plan, WCAI will implement such changes through the use of a Corrective Action Request (CAR) as described in Section 14.2 of the QAPP (Attachment C). Such CAR will require approval of WCAI, the test manager, and EPA.

9.0 DATA IN LIEU OF TESTING

WCAI has conducted a number of previous tests on the carbon reactivation furnace and is confident in its ability to meet all emission requirements, however most of those tests were not conducted under conditions which would support all of the desired permit conditions as described in this test plan. Thus, data from those previous tests is not being submitted in lieu of the currently planned compliance testing. WCAI does however have particle size distribution data collected in November 2001, which it believes is appropriate for use during the risk assessment, and has included in Attachment G.

WCAI believes that it is appropriate to utilize the existing particle size distribution (PSD) data in lieu of gathering the same data during the Performance Demonstration Test, since PSD data is used for risk assessment modeling of long-term impacts from the facility. This data set was generated under typical operating conditions without spiking of metals or ash, thus the size distribution data in Attachment G is representative of normal operations. It is possible that spiking of finely divided metals during the Performance Demonstration Test could alter the size distribution of the emitted particles compared to normal operations. Further, use of the current PSD data set will also eliminate one sampling train during the Performance Demonstration Test, which is already extremely complex.

Table 2-1
Spent Activated Carbon Characterization Summary

Stream Type: Solid

Stream Name: Spent Activated Carbon

Feed Method: Dewatering screw, conveyor belt and rotary airlock

Constituent/Property	Units	Value		
		Typical	Range	
Organic Constituents (a)				
Total organics	wt%	3.1	2 - 4	
Inorganic Constituents				
Water	wt%	43.5	30 - 50	
RCRA Metals (a)				
Antimony	mg/kg	<10	<10	
Arsenic	mg/kg	2.8	1.2 - 19	
Barium	mg/kg	38.3	1 - 110	
Beryllium	mg/kg	0.5	<0.1 - 0.7	
Cadmium	mg/kg	0.7	<0.5 - 6.9	
Chromium	mg/kg	11	3.1 - 240	
Chromium (VI)	mg/kg	<0.9	<1	
Lead	mg/kg	2.7	<2 - 25	
Mercury	mg/kg	0.1	0 - 0.5	
Nickel	mg/kg	21.3	7.5 - 140	
Selenium	mg/kg	<2	<1 - 3.9	
Silver	mg/kg	1	<0.5 - 1.6	
Thallium	mg/kg	10.7	<5 - 29	
Other Metals (a)				
Cobalt	mg/kg	4.8	2.1 - 19	
Copper	mg/kg	31.4	12 - 60	
Manganese	mg/kg	223	54 - 590	
Vanadium	mg/kg	6.2	3.7 - 7.9	
Zinc	mg/kg	35.4	22 - 44	
Elemental Composition (b)				
Carbon (from spent carbon)	wt%	94.5	70 - 99	
Carbon (from organic adsorbed on carbon)	wt%	2.9	1.6 - 25	
Hydrogen	wt%	0.4	0.2 - 8	
Oxygen	wt%	0.5	0.3 - 5	
Nitrogen	wt%	0.1	0.06 - 0.5	
Sulfur	wt%	0	<0.1	
Phosphorous	wt%	0	<0.1	
Chlorine/chloride	wt%	1.5	0 - 5	
Bromine/bromide	wt%	0	<0.1	
Fluorine/fluoride	wt%	0	<0.1	
lodine/iodide	wt%	0	<0.1	

- (a) As fed basis (wet)
- (b) Dry basis (as received)

Note: The information presented in this table is considered typical but should not be considered limiting. Feed rates and operating parameters will be adjusted to compensate for changes in waste properties or characteristics.

Table 2-2

Spent Activated Carbon Organic Constituent Data Summary					
		Organics (lb constituent per lb spent activated carbon)			
Constituent	CAS NO.	Minimum	Average		
1-Butanol	71-36-3	8.67E-04	8.67E-04	8.67E-04	
1-Hexane	110-54-3	3.86E-04	8.45E-02	4.24E-02	
1,1 Dichloroethane	75-34-3	9.00E-09	3.20E-02	9.71E-04	
1,1 Dichloroethene	75-35-4	2.50E-10	2.94E-01	2.51E-03	
1,1,1 Trichloroethane	71-55-6	2.50E-09	3.43E+00	1.31E-02	
1,1,2 Trichloroethane	79-00-5	5.00E-07	1.41E-02	3.28E-03	
1,1,2,2 Tetrachloroethane	79-34-5	1.45E-05	3.31E-04	2.29E-04	
1,2 Dibromoethane	106-93-4	2.50E-08	1.98E-02	4.57E-03	
1,2 Dichlorobenzene	95-50-1	2.05E-05	4.60E-03	9.99E-04	
1,2 Dichloroethane	107-06-2	0.00E+00	1.39E-01	7.18E-03	
1,2 Dichloroethene	540-59-0	2.50E-08	7.32E-03	2.13E-03	
1,2 Dichloropropane	78-87-5	3.00E-09	5.30E-02	6.06E-03	
1,2,3 Trichloropropane	96-18-4	3.72E-06	3.72E-06	3.72E-06	
1,2,4 Trimethylbenzene	95-63-6	1.10E-07	4.80E-04	3.84E-04	
1,2-Dichloroethene (cis)	156-59-2	1.00E-09	2.63E-03	1.39E-03	
1,2-Dichloroethene (trans)	156-60-5	7.32E-05	5.44E-04	3.65E-04	
1,3 Dichlorobenzene	541-73-1	7.40E-05	5.48E-04	1.70E-04	
1,4 Dichlorobenzene	106-46-7	2.50E-08	3.44E-03	5.20E-04	
2,3,4,6 Tetrachlorophenol	58-90-2	1.82E-05	1.82E-05	1.82E-05	
2-Butanol	78-92-2	5.90E-04	5.90E-04	5.90E-04	
2-Butoxyethanol	111-76-2	2.73E-03	2.73E-03	2.73E-03	
2-ethyl-1-Methylbenzene	611-14-3	9.40E-05	9.40E-05	9.40E-05	
2-methoxy-1-Propanol		6.24E-03	6.24E-03	6.24E-03	
2-Methylnaphthalene	91-57-6	1.63E-05	1.34E-03	4.61E-04	
2-Methylphenol (o-Cresol)	95-48-7	2.14E-05	2.14E-05	2.14E-05	
3-/4-Methylphenol (m&p	108-39-4 &				
Cresol)	106-44-5	3.40E-05	3.40E-05	3.40E-05	
4-ethyl-1-Methylbenzene		8.10E-05	8.10E-05	8.10E-05	
Acenaphthalene	208-96-8	3.36E-05	6.26E-04	3.30E-04	
Acenaphthene	83-32-9	2.81E-06	2.41E-05	1.09E-05	
Acenaphthylene		1.18E-06	2.66E-06	1.92E-06	
Acetone	67-64-1	4.51E-03	8.49E-03	6.50E-03	
Acrylic Acid	79-10-7	2.50E-05	2.50E-05	2.50E-05	
Acrylonitrile	107-13-1	9.30E-06	9.30E-06	9.30E-06	
Aldrin	309-00-2	6.60E-07	6.60E-07	6.60E-07	
Aniline	62-53-3	2.51E-05	4.26E-04	1.47E-04	
Benzene	71-43-2	2.50E-10	9.25E-02	1.44E-03	
Benzo(a)Anthracene	56-55-3	5.60E-07	2.10E-06	1.33E-06	
Benzo(b)Fluoranthene	205-99-2	2.30E-07	4.00E-07	3.20E-07	
Bromodichloromethane	75-27-46	3.00E-05	6.18E-04	4.06E-04	
Butane	106-97-8	9.69E-06	9.69E-06	9.69E-06	
Butyl Acetate	123-86-4	1.36E-02	1.36E-02	1.36E-02	
Carbon Tetrachloride	56-23-5	3.00E-08	1.36E-02	5.39E-04	
Chlorobenzene	108-90-7	2.50E-08	2.75E-03	4.76E-04	
Chloroethane	75-00-3	3.89E-03	3.89E-03	3.89E-03	

Table 2-2

Spent Activated Carbon Organic Constituent Data Summary					
	CAS NO.	Organics (lb constituent per lb spent activated carbon)			
Constituent		Minimum	Maximum	Average	
Chloroform	67-66-3	1.40E-08	2.08E-02	1.05E-02	
Chloromethane	74-87-3	2.06E-04	2.06E-04	2.06E-04	
Chrysene	218-01-9	6.40E-07	6.40E-07	6.40E-07	
Cresol	1319-77-3	5.10E-05	1.74E-04	1.13E-04	
Cumene	98-82-8	5.78E-06	1.65E-03	4.37E-04	
Dibenzofuran	132-64-9	7.66E-06	2.61E-05	1.69E-05	
Dicyclopentadiene	77-73-6	6.06E-04	6.49E-02	1.68E-02	
Dioxane	123-91-1	1.16E-04	9.20E-04	5.18E-04	
Ethanol	64-17-5	3.56E-04	3.56E-04	3.56E-04	
Ethyl Acetate	141-78-6	5.87E-03	5.87E-03	5.87E-03	
Ethylbenzene	100-41-4	5.00E-10	2.30E-02	1.14E-03	
Ethylene Glycol	107-21-1	2.94E-01	2.94E-01	2.94E-01	
Fluoranthene	206-44-0	3.11E-06	2.90E-05	1.61E-05	
Freon 113	76-13-1	1.10E-09	1.10E-09	1.10E-09	
Isobutane	75-28-5	1.42E-02	1.42E-02	1.42E-02	
Isopar C	.0 _0 0	1.27E-03	5.48E-02	2.80E-02	
Isopropyl Alcohol	67-63-0	7.00E-03	7.00E-03	7.00E-03	
Lindane	58-89-9	1.54E-09	6.70E-06	1.28E-06	
m&p-Xylenes	108-38-3	1.012 00	0.702 00	1.202 00	
map //yioneo	&106-42-3	7.20E-08	2.89E-03	5.90E-04	
Methanol	67-56-1	1.36E-01	1.36E-01	1.36E-01	
Methoxychlor	72-43-5	2.80E-06	2.80E-06	2.80E-06	
Methyl ethyl ketone	78-93-3	1.20E-08	4.10E-03	1.40E-03	
Methyl Isobutyl ketone	108-10-1	5.00E-06	4.24E-02	2.94E-03	
Methyl methacrylate	80-62-6	2.50E-08	2.50E-08	2.50E-08	
methyl tert-butyl ether	1634-04-4	1.22E-07	4.66E-02	5.86E-03	
Methylene chloride	75-09-2	1.90E-08	1.30E-01	1.63E-03	
Methylnaphthalene	28804-88-8	3.54E-06	5.03E-06	4.29E-06	
Naphthalene	91-20-3	6.00E-09	4.93E-03	4.31E-04	
n-Hexane	110-54-3	5.51E-04	8.25E-03	4.40E-03	
Nitrobenzene	98-95-3	6.99E-06	3.14E-02	4.50E-03	
o-Xylene	95-47-6	2.50E-09	9.00E-05	1.22E-05	
Pentachlorophenol	95-47-6 87-86-5	1.00E-06	3.97E-03	7.36E-04	
Phenanthrene	85-01-8	3.20E-07	2.95E-05	1.08E-05	
			4.03E-03	1.27E-03	
Phenol Polychlorinated Biphenyls	108-95-2 1336-36-3	2.00E-07 8.00E-07	3.50E-06	2.15E-06	
, , ,	103-65-1	9.00E-05	9.00E-05		
Propylbenzene Propylene glycol		9.00E-03	ÿ.∪∪⊑ - ∪3	9.00E-05	
1, 0,	107-98-2	1 455 00	1 455 00	1 455 00	
monomethyl ether acetate Propylene oxide	75 FC 0	1.45E-02	1.45E-02	1.45E-02	
1 /	75-56-9	4.30E-09	4.00E-03	1.00E-03	
Styrene	100-42-5	2.50E-08	3.97E-02	3.57E-03	
Tetrachloroethane	630-20-6 &	0.005.00	0.005.00	0.005.00	
Tatus ablana atla la ca	79-34-5	2.96E-03	2.96E-03	2.96E-03	
Tetrachloroethylene	127-18-4	0.00E+00	1.59E-01	1.84E-02	
Tetrahydrofuran	109-99-9	4.16E-04	4.16E-04	4.16E-04	

Table 2-2

Spent	Spent Activated Carbon Organic Constituent Data Summary							
		Organics (lb cons	Organics (lb constituent per lb spent activated carbon)					
Constituent	CAS NO.	Minimum	Maximum	Average				
Toluene	108-88-3	1.60E-09	1.30E-01	8.68E-03				
Trichloroethylene	79-01-6	2.50E-09	2.17E-01	2.24E-03				
Trichlorofluoromethane	75-69-4	1.00E-07	4.00E-02	1.42E-03				
Triethylamine	121-44-8	9.54E-03	9.54E-03	9.54E-03				
Tris(hydroxymethyl)								
Aminomethane		1.77E-02	1.77E-02	1.77E-02				
Vinyl Chloride	75-01-4	2.30E-08	2.40E-05	2.58E-06				
Xylene	1330-20-7	8.00E-10	1.59E-01	3.41E-03				

All data reported on a dry carbon basis.

Table 2-3 Typical Characteristics of Natural Gas

Stream Type: Vapor Stream Name: Natural Gas Feed Method: Burner

Typical Range	Constituent/Property	Units	Va	lue
Methane	Constituting reporty	00		Range
Ethane				
Propane				93.4 - 93.9
I-Butane			0.5	
In-Butane				
n-Pentane	n-Butane	vol%		0.08 - 0.1
Hexane (plus)				
Hydrogen sulfide				
Carbonyl sulfide ppmv 0.04 0 - 0.9 bimethyl sulfide ppmv 0.4 0 - 0.9 t-Butylmercaptan ppmv 0.02 0 - 0.8 Methyl t-butyl disulfide ppmv 0.02 0 - 0.05 Cyclopentane ppmv 10 9 - 11 Methylcyclohexane ppmv 30 25 - 37 Hexanes ppmv 199 155 - 265 Heptanes ppmv 199 155 - 265 Heptanes ppmv 74 54 - 100 Octanes ppmv 48 32 - 65 Nonanes ppmv 17 10 - 26 Decanes ppmv 4 2 - 6 Undecanes ppmv 1.5 1 - 2 Dodecanes ppmv 4 2 - 6 Dodecanes ppmv 4 2 - 6 Toluene ppmv 10 10 - 11 Ethyl benzene ppmv 0.7 0 - 1.7 m-Xylene ppmv 0.8				
Dimethyl sulfide				
Methyl t-butyl disulfide ppmv 0.02 0-0.05 Cyclopentane ppmv 10 9-11 Methylcyclopentane ppmv 27 25-28 Cyclohexane ppmv 31 29-33 Methylcyclohexane ppmv 30 25-37 Hebranes ppmv 199 155-265 Nonanes ppmv 74 54-100 Octanes ppmv 48 32-65 Nonanes ppmv 48 32-65 Nonanes ppmv 49 2-6 Undecanes ppmv 4 2-6 Undecanes ppmv 1.5 1-2 Dodecanes ppmv 1.6 1.7 Prysicarene ppmv 1.0 1.1 T				0 - 0.9
Cyclopentane ppmv 10 9 - 11 Methylcyclopentane ppmv 27 25 - 28 Oyclohexane ppmv 31 29 - 33 Methylcyclohexane ppmv 30 25 - 37 Hexanes ppmv 199 155 - 265 Heptanes ppmv 74 54 - 100 Octanes ppmv 48 32 - 65 Nonanes ppmv 17 10 - 26 Decanes ppmv 17 10 - 26 Undecanes ppmv 1.5 1 - 2 Dodecanes ppmv 1.5 1 - 2 Dodecanes ppmv 1.5 1 - 2 Dodecanes ppmv 1.0 10 - 11 Ethyl benzene ppmv 10 10 - 11 Ethyl benzene ppmv 2.7 2.3 O-Xylene ppmv 2.4 2 - 3 O-Xylene ppmv 2.4 2 - 3 P-Xylene ppmv 0.6 0.7 - 0.	t-Butylmercaptan			0 - 0.8
Distribution Dist				9 - 11
Distribution Dist		ppmv		25 - 28
Distribution Dist	Cyclohexane	ppmv		29 - 33
Distribution Dist		ppmv		25 - 37
Distribution Dist				155 - 265
Nonanes				32 - 65
Decanes				10 - 26
Undecanes	Decanes	ppmv	4	2 - 6
Benzene	Undecanes	ppmv		
Toluene		ppmv		
Ethyl benzene				
m-Xylene ppmv 2.4 2-3				
Description		ppmv		
Norganic Constituents				
Water vol% -0 -0 Carbon dioxide vol% 0.9 0.7 - 1.0 Nitrogen vol% 0.9 0.7 - 1.0 Nitrogen vol% 0.03 0.03 - 0.04 Ash vol% -0 -0 Ash vol% -0 -0 RCRA Metals Vol% -0 -0 Arsenic ug/m³ <0.2	p-Xylene	ppmv	0.6	0.4 - 0.7
Water vol% -0 -0 Carbon dioxide vol% 0.9 0.7 - 1.0 Nitrogen vol% 0.9 0.7 - 1.0 Nitrogen vol% 0.03 0.03 - 0.04 Ash vol% -0 -0 Ash vol% -0 -0 RCRA Metals Vol% -0 -0 Arsenic ug/m³ <0.2	Inorganic Constituents			
Carbon dioxide		vol%	~0	~0
Oxygen/Argon vol% 0.03 0.03 - 0.04 Ash vol% −0 −0 RCRA Metals ug/m³ <0.2	Carbon dioxide			0.7 - 1.0
Ash	Nitrogen			1.4 - 1.5
Carbon C				
Arsenic ug/m³ <0.2 <0.2 Barium ug/m³ <0.05 <0.05 Cadmium ug/m³ <0.01 <0.01 Chromium ug/m³ <0.01 <0.01 Chromium ug/m³ <0.05 <0.05 Chromium ug/m³ <0.05 <0.05 Chromium ug/m³ <0.05 <0.05 Chromium ug/m³ <0.05 <0.05 Mercury ug/m³ <0.05 <0.05 Mercury ug/m³ <0.01 <0.01 Coper ug/m³ <0.5 <0.5 Cobalt ug/m³ <0.1 <0.1 Copper ug/m³ <0.2 <0.2 Vanadium Ug/m³ <0.2 <0.2 Copper Ug/m³ <0.2 <0.2 Copper Ug/m³ <0.2 <0.2 Vanadium Ug/m³ <0.2 <0.2 Vanadium Ug/m³ <0.2 <0.2 Callon Ug/m³ Ug/m³	ASII	VUI /6	~0	~0
Barium	RCRA Metals			
Cadmium ug/m³ <0.01 <0.01 Chromium ug/m³ <0.01			<0.2	
Chromium				
Lead ug/m³ <0.05				
Mercury				
Nickel Ug/m³ <0.5 <0.5				
Cobalt				
Cobalt ug/m³ <0.1 <0.1 Copper ug/m³ <0.3	Nickei	ug/III	₹0.5	<0.5
Copper	Other Metals			
Manganese ug/m³ <0.2 <0.2 Vanadium ug/m³ <0.2			<0.1	<0.1
Vanadium	Copper		<0.3	<0.3
Physical/Chemical Properties		ug/m ³		
Physical Form	Vanadium	ug/m³	<0.2	<0.2
Physical Form	Physical/Chemical Properties			
Viscosity (if liquid) CSt NA NA		NA	Vapor	
Heating Value Btu/scf 10.28 - 10.33 10.30 Vapor Specific Gravity NA 0.593 - 0.595 0.594 Elemental Composition	Viscosity (if liquid)		NA	
Vapor Specific Gravity NA 0.593 - 0.595 0.594 Elemental Composition wf% 74.8	Heating Value	Btu/scf	1028 - 1033	
Carbon W1% 74.8 Hydrogen w1% 24 Oxygen w1% 0 Nitrogen w1% 1.2 Sulfur w1% 0 Chlorine/chloride ug/m3 <1.6	Vapor Specific Gravity	NA	0.593 - 0.595	0.594
Carbon W1% 74.8 Hydrogen w1% 24 Oxygen w1% 0 Nitrogen w1% 1.2 Sulfur w1% 0 Chlorine/chloride ug/m3 <1.6	Elemental Composition			
Hydrogen		wt%	74.8	
Nitrogen wt% 1.2 Sulfur wt% 0 Chlorine/chloride ug/m³ <1.6	Hydrogen	wt%	24	
Sulfur wt% 0 Chlorine/chloride ug/m³ <1.6				
Chlorine/chloride ug/m³ <1.6 Bromine/bromide ug/m³ ~0 Fluorine/fluoride ug/m³ ~0	Nitrogen			
Bromine/bromide ug/m³ ~0 Fluorine/fluoride ug/m³ ~0			_	
Fluorine/fluoride ug/m ³ ~0				
lodine/iodide ug/m³ -0				
		ug/m ³		

Source: "Analysis of Trace Level Compounds in Natural Gas" Gas Research Institute, Document Number GRI-99/0111 February, 2000

Note: Arsenic and mercury, which are occasionally found at ppmv or sub-ppmv levels in some raw natural gas wells, were not detected in processed and distributed natural gas. Chromium, nickel, cobalt, vanadium, etc. are not naturally-occurring and were not detected. The concern expressed in some reports regarding the possibility that these metals may be picked up by natural gas flowing through the gas delivery system was not corroborated. The lack of metals found in this study suggest that the metals found in earlier work were due to carryover from combustion systems which had been fired using other fuels (coal and/or oil).

Table 3-1. Regulatory Compliance Instrumentation

Parameter	Identification Number of Sensor/Transmitter (a)	Instrument Type	Units	Range	Expected Operating Point or Range	Calibration frequency	Averaging	AWFCO (Y/N)
Feed rate of spent activated carbon	WE/WT-427	Weigh cell	lb/h	0-6000	< 2760	Semi- annually	1-hr Block	Y
Total feed rate of mercury	Computer	Calculated	lb/h	NA	0 - 1.9E-03	NA	12-hr RA	N
Total feed rate of SVM	Computer	Calculated	lb/h	NA	0 – 1.0	NA	12-hr RA	N
Total feed rate of LVM	Computer	Calculated	lb/h	NA	0 – 1.2	NA	12-hr RA	N
Afterburner gas temperature	TE-464A/B	T/C	F	0-2400	>1750	Semi- annually	1-hr RA	Υ
Venturi scrubber pressure differential	PDIT-556	Pressure sensor	in w.c.	0-50	>15	Semi- annually	1-hr RA	Υ
Venturi/Quench scrubber recycle liquid flow rate (Total Flow)	FI-562 (Total of FE/FIT-553, 554, & 555)	Sum of Magnetic flow meters (Dynac Function)	gpm	0-656	>75	Note 1	1-hr RA	Υ
Packed bed scrubber pH	AE/AIT-590	pH probe	рН	0-14	5	Quarterly	1-hr RA	Υ
Packed bed scrubber recycle liquid flow rate	FE/FIT-552	Magnetic flow meter	gpm	0-200	>60	Note 1	1-hr RA	Υ
Packed bed scrubber pressure differential	PDIT-560	Pressure sensors	in w.c.	0-10	>0.1	Semi- annually	1-hr RA	N
Scrubber blowdown flow rate	FE/FIT-605	Magnetic flow meter	gpm	0-691	>30	Note 1	1-hr RA	Y
WESP secondary DC voltage	EI-558	Voltmeter	kVDC	0-80	14-22	NA	1-hr RA	Υ
Stack gas flow rate	FE/FIT-700	Pitot tube	acfm	Not available	<10,000	Semi- annually	1-hr RA	Υ
Stack gas carbon monoxide (b)	AE-575	Nondispersive infrared CEMS	ppmvd @7% O ₂	0-100 0-1000	< 100	Daily/ Quarterly/ Annually	1-hr RA	Y
Stack gas oxygen (b)	AE-576	Paramagnetic CEMS	vol%, dry	0-25	7	Daily/ Quarterly/ Annually	None	N

RA = Rolling average.

- (a) Instrument identification from P&IDs.
- (b) CEMS calibrations include daily zero and span check, quarterly cylinder gas audit, and annual performance specification test.

Note1: The magnetic flow meter manufacturer does not recommend calibration of these instruments.

Table 3-2. CEM Performance Criteria a

	Performance			
Monitor/Test	Criteria	Reference	Notes	
Carbon Monoxide Monitor				
Calibration Drift	≤ 3 % of span	PS 4B, 4.2	For 6 out of 7 days; low and high range	
Calibration Error	≤ 5 % of span	PS 4B, 4.4	At all 3 test points	
Response Time	≤ 2 minutes	PS 4B, 4.5		
Relative Accuracy	≤ 10 % of RM Mean	PS 4B, 4.3 (PS 4A, 2.5)	or 5 ppm, whichever is greater ^b	
Oxygen Monitor		, ,		
Calibration Drift	≤ 0.5 % O ₂	PS 3, 2.2	For 7 consecutive days	
Calibration Error	\leq 0.5 % O_2	PS 4B, 4.5	At all three test points	
Response Time	≤ 2 minutes	PS 4B, 4.5	Longest of the upscale and downscale averages	
Relative Accuracy	NA	BIF ^c	Incorporated into CO RA test	

PS - Performance Specification, RM - Reference Method

a) Original reference for performance criteria is Performance Specification 4B.

b) If the average concentration of CO in the emissions is < 10 ppmv (l.e., < 10 % of the 100 ppmv standard), compliance with the RA criteria has been demonstrated if the RM demonstrates that CO emissions are < 10 ppmv.

c) 40 CFR 266, Appendix IX, Paragraphs 2.1.4.6 and 2.1.5.3

Table 3-3. Automatic Waste Feed Cutoff Parameters

	Action	1
Automatic Waste Feed Cutoff Parameter	Stop Spent Activated Carbon Feed	Alarm
High-high spent activated carbon feed rate	✓	✓
Low-low afterburner combustion gas temperature	✓	✓
Low-low venturi scrubber pressure differential	✓	✓
Low-low quench/venturi total liquid flow rate	✓	✓
Low-low packed bed scrubber pH	✓	✓
Low-low packed bed scrubber liquid flow rate	✓	✓
Low-low scrubber blowdown flow rate	✓	✓
Low-low WESP secondary voltage	✓	✓
High-high stack gas flow rate	✓	✓
High-high stack gas carbon monoxide	✓	✓
AWFCO system malfunction	✓	✓

Table 4-1. Planned Performance Test Feed Characteristics

Component/Property	Spent Activated Carbon	POHC Spiking Material	Organic Surrogate Material	Metals Spiking Material	Composite Feed Material
Feed method	Conveyor	Pump	Pump	Pump	
Description	Granular carbon slurry	Organic liquid	Organic liquid	Dispersion	Final Feed
Granular carbon content (wt%)	55 - 60	0	0	0	53 - 58
Total chlorine/chloride content (wt%)	0.7 - 0.9	58.6	33.1	0	2 - 4
Water content (wt%)	40 - 45	0	0	0	38 - 43
Mercury concentration (mg/kg)	0 – 0.2	0	0	0	0 - 0.2
Semivolatile metal concentration (mg/kg)	3 - 4	0	0	15 – 25 wt%	120 - 140
Low volatility metal concentration (mg/kg)	10 - 15	0	0	15 – 25 wt%	120 - 140
Dispersing agent concentration (wt%)	0	0	0	50 – 70 wt%	0.03 - 0.05
POHC concentration Monochlorobenzene (wt%) Tetrachloroethene (wt%)	Trace Trace	50 50	0 0	0	1.2 – 1.5 1.2 – 1.5
Organic surrogate concentration Toluene (wt%) 1,1,1-Trichloroethane (wt%)	Trace Trace	0	41.5 19.5	0	0.5 - 0.7 0.2 - 0.4
Naphthalene (wt%) Ethylene glycol (wt%)	Trace Trace	0	19.5 19.5	0 0	0.2 - 0.4 0.2 - 0.4

Note: All characteristics are approximate, as fed basis, and represent targets for the test.

Table 4-2. Performance Test Target Operating Conditions

Parameter	Target
Spent activated carbon feed rate (lb/hr)	2,500 - 3,000
Auxiliary fuel feed rate	As needed to
	maintain
	temperature
Total chlorine/chloride feed rate (lb/hr)	75 - 80
Chlorine/chloride (from spent activated carbon) (a)	23 - 24
Chlorine/chloride (from spiking)	51 - 57
Metals feed rates (lb/hr)	
Mercury (from spent activated carbon) (a)	0.0003
Total SVM (Cd + Pb)	0.36
SVM (from spent activated carbon) (a)	0.01
SVM (from spiking)	0.35 as Pb
Total LVM (As + Be + Cr)	0.39
LVM (from spent activated carbon) (a)	0.04
LVM (from spiking)	0.35 as Cr
POHC feed rate (lb/hr)	
Chlorobenzene (from spiking)	33 - 37
Tetrachloroethene (from spiking)	33 - 37
Organic surrogate feed rate (lb/hr)	
Toluene (from spiking)	16 - 18
1,1,1-Trichloroethane (from spiking)	7 - 9
Naphthalene (from spiking)	7 - 9
Ethylene glycol (from spiking)	7 - 9
Afterburner gas temperature (F)	1,750
Venturi scrubber pressure differential (in. w.c.)	≥ 15
Venturi scrubber recycle liquid flow rate (gpm)	≥ 75
Packed bed scrubber recycle liquid flow rate (gpm)	≥ 60
Packed bed scrubber pH	≥ 4
Packed bed scrubber pressure differential (in. w.c.)	0.2
Scrubber blowdown flow rate (gpm)	≥ 30
WESP secondary voltage (KVDC)	≥ 14
Stack gas flow rate (acfm)	≤ 10,000
Stack gas CO (ppmv, @7%O ₂ , dry)	≤ 100
Stack gas THC (pmv as propane, @7%O ₂ , dry)	≤ 10

⁽a) Based on typical spent activated carbon characteristics. Actual value may vary slightly.

Note: Target conditions are identical for each run. Normal process variations around these targets are expected.

Table 5-1 Sample Collection Locations, Equipment, and Methods

Locationa	Sample Name Number	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
1	Spent Activated Carbon (1-Volatiles) (1-Semivolatiles) (1 - Metals) (1 - Properties) (1-Archive)	Conveyor	Teflon scoop 4L glass jug, 250 ml jar (VOA) 1L glass bottles with teflon lined lids	1 scoop per grab; 250 ml volatiles 1L semivolatiles 1L properties 1L metals 1L archive	Collect a grab sample at each 15-minute interval during each test run. Grab samples will be combined in a glass jug to build run composite. Collect four 1-lter samples and one 250 ml VOA jar of the homogenized composite at the end of the test run.	SW-846, Vol. II, Chapter 9, Section 9.3
2	Makeup water (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at the beginning of the test; Fill 4L bottle at beginning of test. Fill three 1-liter samples from the 4L bottle.	SW-846, Vol. II, Chapter 9, Section 9.2
3	Caustic (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at the beginning of the test; Fill 4L bottle at beginning of test. Fill three 1-liter samples from the 4L bottle.	SW-846, Vol. II, Chapter 9, Section 9.2
4	Scrubber Blowdown (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA ~200 ml per grab; 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at each 30 minute interval; Collect a ~200 ml grab sample at each 30-minute interval during each test run. Grab samples will be combined in a glass jug to build run composite. Collect three 1-liter samples of the homogenized composite at the end of the test run.	SW-846, Vol. II, Chapter 9, Section 9.2
5	POTW Discharge (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA ~200 ml per grab; 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at each 30 minute interval; Collect a ~200 ml grab sample at each 30-minute interval during each test run. Grab samples will be combined in a glass jug to build run composite. Collect three 1-liter samples of the homogenized composite at the end of the test run.	SW-846, Vol. II, Chapter 9, Section 9.2

Table 5-1 Sample Collection Locations, Equipment, and Methods

Location ^a	Sample Name Number	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
Stack (6)	Stack gas M29	Port	EPA Method 29 multiple metals sampling train	Minimum 120 minutes ^{c,d}	Collect integrated sample for metals and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5, and 29.
Stack (6)	Stack gas M0061	Port	SW-846 Method 0061 hexavalent chromium sampling train	Minimum 120 minutes ^{c,d}	Collect integrated samples for hexavalent chromium and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0061
Stack (6)	Stack gas M26A	Port	EPA Method 26A sampling train	Minimum 120 minutes ^{c,d}	Collect integrated sample for particulate, hydrogen chloride, and chlorine. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5, and 26A
Stack (6)	Stack gas M0010-SV	Port	SW-846 Method 0010 sampling train	Minimum 3 dry standard cubic meters ^{c,d}	Collect integrated sample for semivolatile organics, organochlorine pesticides, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0010.
Stack (6)	Stack gas M0010-P	Port	Combined SW-846 Method 0010, EPA CARB Method 429 sampling train	Minimum 3 dry standard cubic meters ^{c,d}	Collect integrated sample for PAHs, PCBs, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0010; CARB Method 429.

Table 5-1 Sample Collection Locations, Equipment, and Methods

Location ^a	Sample Name Number	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
Stack (6)	Stack gas M0010-TOE	Port	SW-846 Method 0010 sampling train	Minimum 3 dry standard cubic meters ^{c,d}	Collect integrated samples for total semivolatile organics, total nonvolatile organics, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0010; EPA TOE Guidance
Stack (6)	Stack gas M0023A	Port	SW-846 Method 0023A sampling train	Minimum 3 hours and 2.5 dry standard cubic meters ^{c,d}	Collect integrated sample for PCDD/PCDFs, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0023A.
Stack (6)	Stack gas M0030	Port	SW-846 Method 0030 volatile organic sampling train	4 tube pairs per run; 40 minutes per tube pair. Up to 20 liters of stack gas per tube pair	Collect four pairs of sorbent tubes and stack gas condensate for volatile organcs during each run.	SW846-0030 (VOST)
Stack (6)	Stack gas M0040	Port	SW-846 Method 0040 sampling train	25 – 50 liters	Collect representative sample through a heated sample probe and filter; through a condenser and into a Tedlar bag. Transport dried sample and condensate to GC/FID.	EPA Methods 1 through 5; SW846-0040; EPA TOE Guidance.
Stack (6)	Stack gas PSD	Port	Cascade impactor	As required	Collect particle size distribution samples on multiple substrates	Cascade impactor mfgr. instructions
Stack (6)	Stack gas CEMS	Port	Temporary CEMS THC	Continuous	Continuously monitor stack gas for total hydrocarbons during each run	EPA Method 25A
Stack (7)	Stack gas CEMS	Port	Installed CEMS CO	Continuous	Continuously monitor stack gas carbon monoxide during each run.	40 CFR 63 Subpart EEE Appendix; PS 4B

Table 5-1 Sample Collection Locations, Equipment, and Methods

Location ^a	Sample Name Number	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
Stack (7)	Stack gas CEMS	Port	Installed CEMS O ₂	Continuous	Continuously monitor stack gas oxygen during each run.	40 CFR 63 Subpart EEE Appendix; PS 4B

- a Refer to Figure 5-1 of the Comprehensive Performance Test Plan.
- b "SW846" refers to <u>Test Methods for Evaluating Solid Waste</u>, Third Edition, November 1986, and Updates.
 - "EPA Method" refers to New Source Performance Standards, Test Methods and Procedures, Appendix A, 40 CFR 60.
 - "CARB" refers to California Air Resources Board Methods.
 - "PS 4B" refers to Performance Specification 4B, 40 CFR 60.
- c The exact volume of gas sampled will depend on the isokinetic sampling rate.
- d Isokinetic sampling trains include:
 - Collecting one set of bag samples (or using CEM) for oxygen and carbon dioxide analysis to determine stack gas molecular weight (EPA Method 3)
 - Performing stack gas velocity, pressure, and temperature profile measurement for each sampling location (EPA Method 2)
 - Determining the moisture content of the stack gas for each sampling train (EPA Method 4)

Table 5-10. Summary of Target Dioxin/Furan Analytes

Dioxin/Furan Compounds	CAS Number
2,3,7,8-TCDD	1746-01-6
Total TCDD	NA
2,3,7,8-TCDF	51207-31-9
Total TCDF	NA
1,2,3,7,8-PeCDD	40321-76-4
Total PeCDD	NA
1,2,3,7,8-PeCDF	57117-41-6
2,3,4,7,8-PeCDF	57117-31-4
Total PeCDF	NA
1,2,3,6,7,8-HxCDD	57653-85-7
1,2,3,4,7,8-HxCDD	39227-28-6
1,2,3,7,8,9-HxCDD	19408-74-3
Total HxCDD	NA
1,2,3,6,7,8-HxCDF	57117-44-9
1,2,3,4,7,8-HxCDF	70648-26-9
1,2,3,7,8,9-HxCDF	72918-21-9
2,3,4,6,7,8-HxCDF	60851-34-5
Total HxCDF	NA
1,2,3,4,6,7,8-HpCDD	35822-39-4
Total HpCDD	NA
1,2,3,4,6,7,8-HpCDF	67562-39-4
1,2,3,4,7,8,9-HpCDF	55673-89-7
Total HpCDF	NA
Total OCDD	3268-87-9
Total OCDF	39001-02-0

Sample Name	Analyses	Rationale
Spent activated carbon	Elemental (C,H,O,N,S, moisture)	Engineering information
	Chloride content	Establish feed limits, waste characterization
	Total metals	Establish feed limits, waste characterization
	POHCs, other organics	Determine DRE, waste characterization
Makeup water	POHCs	Account for possible contribution to stack emissions
	Total metals	Feed material characterization
	Volatile organics, semivolatile organics	Feed material characterization
Caustic	POHCs	Account for possible contribution to stack emissions
	Total metals	Feed material characterization
	Volatile organics, semivolatile organics	Feed material characterization
Scrubber blowdown	POHCs	Evaluate fate of POHCs
	Total metals	Evaluate fate of metals
	Volatile organics, semivolatile organics	Evaluate fate of organics
POTW Discharge	Volatile organics, semivolatile organics	Evaluate fate of organics
	Total metals	Evaluate fate of metals
Stack gas M0010-SV	Semi-volatile organics, OC Pesticides, oxygen, carbon dioxide, temperature, flow rate	Gather emissions data
Stack gas M0010-P	PCBs, PAHs, oxygen, carbon dioxide, temperature, flow rate	Gather emissions data
Stack gas M0010-TOE	Total semivolatile and nonvolatile organics, moisture, oxygen, carbon dioxide, temperature, flow rate	Gather emissions data
Stack gas M0023A	PCDD/PCDFs, oxygen, carbon dioxide, temperature, flow rate	Evaluate performance and gather emissions data
Stack gas M0030	POHCs, other volatile organics	Demonstrate performance, Gather emissions data
Stack gas M0040	Total volatile organics	Gather emissions data
Stack gas M26A	Particulate, HCI, Cl ₂ , moisture, oxygen, carbon dioxide, temperature, flow rate	Demonstrate performance, Gather emissions data
Stack gas M29	Multiple metals, moisture, oxygen, carbon dioxide, temperature, flow rate	Demonstrate performance, Gather emissions data
Stack gas M0061	Hexavalent chromium, moisture, oxygen, carbon dioxide, temperature, flow rate	Gather emissions data
Stack gas PSD	Particle size distribution	Gather emissions data

Table 5-2. Analyses Planned For Performance Test Samples

Sample Name	Analyses	Rationale
•	Oxygen, carbon monoxide, total hydrocarbons	Evaluate performance and gather emissions data

Table 5-3. Summary of Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Spent Activated Carbon	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Chloride	1	3	SW846-5050	lon chromatography (SW846-9056)
	Total metals	1	3	Acid digestion (SW846-3050)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
	Elemental	1	3	NA	(ASTM D5373) with (ASTM D3176) as an alternate
Makeup Water	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
,	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
Caustic	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
Scrubber Blowdown	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
POTW Discharge	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
_	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)

Table 5-3. Summary of Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Stack gas M0030	VOCs + TICs (tenax + tenax/charcoal tubes) (Note 2)	(Note 3)	(Note 3)	Thermal desorption, trap (SW846-5041A)	GC/MS (SW846-8260)
	VOCs + TICs (condensate) (Note 2)	1	3	Purge and trap	GC/MS (SW846-8260)
Stack gas M0040	Total VOCs	1	3	Purge and trap for condensate Direct injection for gas	GC/FID (Guidance for Total Organics, App. A and E)
Stack gas M0010-SV (low res analysis)	Semivolatile Organics & TICs (Note 4)	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	OCP (Note 5)	1	3	Solvent extraction (SW846-3542)	GC (SW-846-8081)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M0010-P (high res analysis)	PCB (Note 7)	1	3	Solvent extraction (SW846-3542)	GC/MS (EPA Method 1668)
	PAH (Note 8)	1	3	Solvent extraction (CARB 429)	GC/MS (CARB 429)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)

Table 5-3. Summary of Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Stack gas M0010- TOE	Total SVOCs	1	3	Solvent extraction (SW846-3542)	TOC GC/FID (Guidance for Total Organics, Appendix C)
	Total NVOCs	1	3	Solvent extraction (SW846-3542)	Gravimetric Method (Guidance for Total Organics, Appendix D)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M0023A	PCDD/PDCF	1	3	Solvent extraction (SW846-3500)	GC/MS (SW-846 Method 8290)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M29	Metals (Note 9)	1	3	Acid digestion (SW846-3050)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M0061	Hexavalent chromium	1	3	NA	lon chromatography, post- column reactor (SW846-7199)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)

Table 5-3. Summary of Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Stack gas M26A	Hydrogen chloride/Chlorine	1	3	NA	lon chromatography (SW846-9057)
	Particulate	1	1	NA	Gravimetric (EPA Method 5)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M00023A	PCDD/PCDF	1	3	Solvent extraction (SW846-8290)	GC/MS (SW846-8290; & SW846-0023A)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Flow rate	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas PSD	Particle size distribution	NA	NA	NA	Cascade impactor manufacturer's instructions
Stack gas temporary CEMS	Total hydrocarbons	(Note 10)	(Note 10)	NA	Extractive Analyzers, EPA Method 25A
Stack gas Installed CEMs	Carbon Monoxide	(Note 10)	(Note 10)	NA	Extractive Analyzers, 40CFR 63 Appendix
	Oxygen	(Note 10)	(Note 10)	NA	Extractive Gas Analyzers, 40 CFR 63 Appendix

Note 1: "ASTM" refers to American Society for Testing and Materials, Annual Book of ASTM Standards, Annual Series.

Note 2: Volatile Target Compounds as listed in this Test Plan, plus tentatively identified compounds.

Note 3: During each sampling run, 4 pairs of VOST tubes (8 samples) will be collected, but only 3 pairs (6 samples) will be analyzed. The extra tube pair provides a contingency in case of breakage or other event that could require analysis of the extra tube pair. Analysis of each tube in each tube pair will be conducted separately.

[&]quot;SW846" refers to Test Methods for Evaluating Solid Waste, Third Edition, November 1986, and updates.

[&]quot;EPA Methods" (Methods 1 through 5 and 23) refer to New Source Performance Standards, Test Methods and Procedures,, App. A, 40CFR 60.

[&]quot;CARB" refers to California Air Resources Board methodology adopted January 27, 1987.

[&]quot;Guidance for Total Organics" refers to EPA/600/R-96/036, March, 1996.

Table 5-3. Summary of Performance Test Analytical Procedures and Methods

- Note 4: Semivolatile Target Compounds as listed in this Test Plan, plus tentatively identified compounds.
- Note 5: Organochlorinated pesticide (OCP) target compounds as listed in this Test Plan.
- Note 6: One set of gas bag samples collected during each stack traverse for Orsat analysis, or CEM.
- Note 7: Polychlorinated Biphenyl (PCB) target compounds target compounds as listed in the Plan
- Note:8 Polycyclic Aromatic Hydrocarbon (PAH) target compounds as listed in this Plan
- Note 9: Metal Target Compounds as listed in this Test Plan.
- Note 10: Installed CEMs sampling and analysis is continuous during each run.

Table 5-4. Summary of Target Volatile Organic Analytes

Volatiles	CAS Number
Acetone	67-64-1
Acrylonitrile	107-13-1
Benzene	71-43-2
Bromodichloromethane	75-27-4
Bromochloromethane	74-97-5
Bromoform	75-25-2
Bromomethane	74-83-9
2-Butanone	78-93-3
Carbon Disulfide	75-15-0
Carbon Tetrachloride	56-23-5
Chlorobenzene	108-90-7
Chlorodibromomethane	124-48-1
Chloroethane	75-00-3
Chloroform	67-66-3
Chloromethane	74-87-3
1,2-Dibromoethane ^a	106-93-4
Dibromomethane	74-95-3
Dichlorodifluoromethane	75-71-8
1,1-Dichloroethane	75-34-3
1,2-Dichloroethane	107-06-2
1,1-Dichloroethene	75-35-4
1,2-Dichloropropane	78-87-5
Dicyclopentadiene ^a	77-73-6
Ethylbenzene	100-41-4
2-Ethyl-1-methylbenzene ^a	611-14-3
2-Hexanone	591-78-6
lodomethane	74-88-4
Methyl methacrylate ^a	80-62-6
Methylene Chloride	75-09-2
Propylbenzene ^a	103-65-1
Styrene	100-42-5
1,1,2,2-Tetrachloroethane	79-34-5
Tetrachloroethene	127-18-4
Tetrahydrofuran ^a	109-99-9
Triethylamine ^a	121-44-8

Table 5-4. Summary of Target Volatile Organic Analytes

Volatiles	CAS Number
Toluene	108-88-3
1,1,1-Trichloroethane	71-55-6
1,1,2-Trichloroethane	79-00-5
Trichloroethene	79-01-6
Trichlorofluoromethane	75-69-4
1,2,3-Trichloropropane	96-18-4
1,2,4-Trimethylbenzene ^a	95-63-6
1,1,2-Trichloro – 1,2,2-trifluoroethane (freon 113)	76-13-1
Vinyl Acetate	108-05-4
Vinyl Chloride	75-69-4
m & p Xylenes	108-38-3 & 106-42-3
o-xylene	95-47-6
Xylenes (total)	1330-02-7

a Reported as a TIC if found

Table 5-5 Summary of Target Metal Analytes

Metal	CAS Number
Aluminum	7429-90-5
Antimony	7440-36-0
Arsenic	7440-38-2
Barium	7440-39-3
Beryllium	7440-41-7
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Copper	7440-50-8
Lead	7439-92-1
Manganese	7439-96-5
Mercury	7439-97-6
Nickel	7440-02-0
Selenium	7782-49-2
Silver	7440-22-4
Thallium	7440-28-0
Vanadium	7440-62-2
Zinc	7440-66-6

Table 5-6. Summary of Target Semivolatile Organic Analytes

Semivolatiles	CAS Number
Aniline	62-53-3
Benzoic Acid	65-85-0
Benzyl alcohol	100-51-6
Bis(2-chloroethoxy) methane	111-91-1
Bis-(2-chloroethyl) ether	111-44-4
Bis(2-ethylhexyl) phthalate	117-81-7
4-Bromophenyl-phenyl ether	101-55-3
Butylbenzylphthalate	85-68-7
4-Chloroaniline	106-47-8
4-Chloro-3-methylphenol	59-50-7
2-Chloronaphthalene	91-58-7
2-Chlorophenol	95-57-8
4-Chlorophenyl-phenyl ether	7005-72-3
Dibenzofuran	132-64-9
Di-n-butylphthalate	84-74-2
1,2-Dichlorobenzene	95-50-1
1,3-Dichlorobenzene	541-73-1
1,4-Dichlorobenzene	106-46-7
3,3'-Dichlorobenzidine	91-94-1
2,4-Dichlorophenol	120-83-2
Diethyl phthalate	84-66-2
2,4-Dimethylphenol	105-67-9
Dimethylphthalate	131-11-3
1,3-Dinitrobenzene	99-65-0
4,6-Dinitro-2-methylphenol	534-52-1
2,4-Dinitrophenol	51-28-5
2,4-Dinitrotoluene	121-14-2
2,6-Dinitrotoluene	606-20-2
Di-n-octyl phthalate	117-84-0
1,4-Dioxane	123-91-1
Diphenylamine	122-39-4
Hexachlorobenzene	118-74-1
Hexachlorobutadiene	87-68-3
Hexachlorocyclo-pentadiene	77-47-4
Hexachloroethane	67-72-1

Table 5-6. Summary of Target Semivolatile Organic Analytes

Semivolatiles	CAS Number
Isophrone	78-59-1
2-Methylphenol	95-48-7
3/4-Methylphenol	108-59-4 & 106-44-5
Cresol (total)	108-59-4, 106-44-5, & 95-48-7
2-Nitroaniline	88-74-4
3-Nitroaniline	99-09-2
4-Nitroaniline	100-01-6
Nitrobenzene	98-95-3
2-Nitrophenol	88-75-5
4-Nitrophenol	100-02-7
N-Nitrosodiphenylamine	86-30-6
N-Nitroso-di-n-propylamine	621-64-7
2,2'-oxybis (1-Chloropropane)	108-60-1
Pentachlorobenzene	82-62-8
Pentachlorophenol	87-86-5
Phenol	108-95-2
1,2,4-Trichlorobenzene	120-82-1
2,4,5-Trichlorophenol	95-95-4
2,4,6-Trichlorophenol	88-06-2

Table 5-7. Summary of Target PAH Analytes

PAH	CAS Number
Acenaphthene	83-32-9
Acenaphthylene	208-96-8
Anthracene	120-12-7
Benzo(a)anthracene	56-55-3
Benzo(b)fluoranthene	205-99-2
Benzo(k)fluoranthene	207-08-9
Benzo(g,h,i)perylene	191-24-2
Benzo(a)pyrene	50-32-8
Benzo(e)pyrene	192-97-2
Chrysene	218-01-9
Dibenzo(a,h)anthracene	53-70-3
Fluoranthene	206-44-0
Fluorene	86-73-7
Indeno(1,2,3-cd)pyrene	193-39-5
2-Methylnaphthalene	91-57-6
Naphthalene	91-20-3
Perylene	
Phenanthrene	85-01-8
Pyrene	129-00-0

Table 5-8. Summary of Target OCP Analytes

ОСР	CAS Number
1,2-Dibromo-3-chloropropane	96-12-8
4,4'-DDD	72-54-8
4,4'-DDE	72-55-9
4,4'-DDT	50-29-3
Aldrin	309-00-2
α-BHC	319-84-6
β-ВНС	319-85-7
γ-BHC (Lindane)	58-89-9
δ-ΒΗС	319-86-8
Chlorobenzilate	510-15-6
α-Chlordane	5103-71-9
δ-Chlordane	5103-74-2
Diallate	2303-16-4
Endosulfan I	959-98-8
Endosulfan II	33213-65-9
Endosulfan sulfate	1031-07-8
Endrin	72-20-8
Endrin ketone	53494-70-5
Heptachlor	76-44-8
Heptachlor epoxide	1024-57-3

Table 5-9. Summary of Target PCB Analytes

РСВ	IUPAC	CAS Number		
3,4,3',4'-Tetrachlorobiphenyl	77	32598-13-3		
3,4,4',5-Tetrachlorobiphenyl		70362-50-4		
2,3,4,3',4'-Pentachlorobiphenyl	105	32598-14-4		
2,3,4,5,4'-Pentachlorobiphenyl	114	74472-37-0		
2,4,5,3',4'-Pentachlorobiphenyl	118	31508-00-6		
3,4,5,2',4'-Pentachlorobiphenyl	123	65510-44-3		
3,4,5,3',4'-Pentachlorobiphenyl	126	57465-28-8		
2,3,4,5,3',4'-Hexachlorobiphenyl	156	38380-98-4		
2,3,4,3',4',5'-Hexachlorobiphenyl	157	68782-90-7		
2,4,5,3',4',5'-Hexachlorobiphenyl	167	52663-72-6		
3,4,5,3',4',5'-Hexachlorobiphenyl	169	32774-16-6		
2,3,4,5,3',4',5'-Heptachlorobiphenyl	189	39635-31-9		
Total Homologue Groups (Sum to Determine total PCBs)				
Monochlorobiphenyls				
Dichlorobiphenyls				
Trichlorobiphenyls				
Tetrachlorobiphenyls				
Pentachlorobiphenyls				
Hexachlorobiphenyls				
Heptachlorobiphenyls				
Octachlorobiphenyls				
Nonachlorobiphenyls				
Decachlorobiphenyls				

	Table 6-1. Anticipated Daily Schedule for Performance Test			
Clock Time	Activity			
07:00	Begin bringing the system to the target operating conditions			
	Testing crew arrives on site and begins setting up for testing			
07:30	System is at operating conditions			
08:30	System has been at the target test conditions for at least one hour			
	Testing crew has completed velocity measurements and leak checks			
	Ready to start first traverse with Method 0023A and Method 0010 sampling trains			
	Ready to start first traverse with Method 29 and Method 0061 sampling trains			
	Ready to start first traverse with Method 26A sampling train			
	Cascade impactor is setup and ready to begin sampling			
	Method 0030 and Method 0040 sampling apparatus setup and ready to begin sampling			
08:30	Start first sampling traverse and first Method 0030 tube set			
09:10	Complete first Method 0030 tube set			
09:20	Start second Method 0030 tube set			
09:30	Complete first traverse of Method 29 and Method 0061 sampling trains			
	Complete first traverse of Method 26A sampling train			
09:30 to 09:40	Conduct post-traverse leak checks of Method 29, Method 0061, and Method 26A			
	sampling trains. Check pH of absorbing solution in Method 0061 sampling train.			
	Switch sampling port locations of Method 29, Method 0061, and Method 26A sampling			
	trains Conduct past part change look shocks of Method 20, Method 0061, and Method 26A			
	Conduct post-port change leak checks of Method 29, Method 0061, and Method 26A			
09:40	sampling trains Start second traverse of Method 29 and Method 0061 sampling trains			
09.40	Start second traverse of Method 26A sampling train			
10:00	Complete second Method 0030 tube set			
10:06	Complete first traverse of Method 0023A and Method 0010 sampling trains			
10:06 to 10:30	Conduct post-traverse leak checks of Method 0023A and Method 0010 sampling trains			
10.00 to 10.00	Switch sampling port locations of Method 0023A and Method 0010 sampling trains			
	Conduct post-port change leak checks of Method 0023A and Method 0010 sampling			
	trains			
10:30	Start second sampling traverse for Method 0023A and Method 0010 sampling trains.			
	Start third Method 0030 tube set			
11:10	Complete third Method 0030 tube set			
11:20	Start fourth Method 0030 tube set			
11:30	Complete second traverse of Method 29 and Method 0061 sampling trains			
	Complete second traverse of Method 26A sampling train			
11:30 to 11:40	Conduct post-traverse leak checks of Method 29, Method 0061, and Method			
	26Asampling trains			
	Prepare trains for removal from stack			
12:00	Complete fourth Method 0030 tube set			
12:06	Complete second traverse of Method 0023A and Method 0010 sampling trains			
12:06 to 12:30	Conduct post-traverse leak checks of Method 0023A and Method 0010 sampling trains			
12:30 to 13:30	Remove all isokinetic sampling trains from stack			
13:30	Complete Method 0040 sample collection			
13:30 to 18:30	Recover Method 0010, Method 0023A, Method 29, Method 0061, and Method 26A			
	sampling trains, package samples, and prepare for next sampling day			
18:30	Sampling crew departs site			

Note: Schedule repeated each sampling day.

Table 7-1. Anticipated Permit Conditions				
Control Parameters ^a	Anticipated Permit Limit	Comments ^b		
GROUP A1 PARAMETERS				
Maximum spent carbon feed rate (lb/hr)	3000	Block hour AWFCO		
Minimum afterburner temperature (°F)	1750	Hourly rolling average AWFCO		
Minimum venturi scrubber pressure differential (in. w.c.)	15	Hourly rolling average AWFCO		
Minimum quench/venturi scrubber total liquid flow rate (gpm)	75	Hourly rolling average AWFCO		
Minimum packed bed scrubber pH	4.0	Hourly rolling average AWFCO		
Minimum packed bed scrubber liquid flow rate (gpm)	60	Hourly rolling average AWFCO		
Minimum wet scrubber blowdown flow rate (gpm)	30	Hourly rolling average AWFCO		
Minimum WESP secondary voltage (kVDC)	14	Hourly rolling average AWFCO		
Maximum stack gas flow rate acfm	10,000	Hourly rolling average AWFCO		
GROUP A2 PARAMETERS				
Maximum stack gas carbon monoxide (ppmvd, @7% oxygen) ^c	100	Hourly rolling average AWFCO		
GROUP B PARAMETERS				
Allowable hazardous constituents	All except dioxin wastes and TSCA PCBs	Class 1 POHC demonstrated		
Maximum total chlorine and chloride feed rate (lb/hr)	78	12-hour rolling average		
Maximum mercury feed rate (lb/hr)	1.9E-03	12-hour rolling average		
Maximum semivolatile metal (Cd + Pb) feed rate (lb/hr)	1.0	12-hour rolling average		
Maximum low volatility metal (As + Be + Cr) feed rate (lb/hr)	1.2	12-hour rolling average		
GROUP C PARAMETERS				
Minimum packed bed scrubber pressure differential (in. w.c.)	0.1	Hourly rolling average		

(a) Group A1 parameters are continuously monitored and recorded, and are interlocked with the automatic waste feed cutoff system. The values for the Group A1 parameters will be based on the performance demonstration test operating conditions.

Group A2 parameters are continuously monitored and recorded, and are interlocked with the automatic waste feed cutoff system. The values for the Group A2 parameters are based on regulatory standards or good operating practice rather than performance demonstration test operating conditions.

Group B parameters are continuously monitored and recorded, but are not interlocked with the automatic waste feed cutoff system. Values for the group B parameters are based on the performance demonstration test operating conditions.

Group C parameters are continuously monitoring and recording, but are not interlocked with the automatic waste feed cutoff system. The values for the Group C parameters are based on manufacturer's specifications and/or operational and safety considerations rather than performance demonstration test operating conditions.

- (b) AWFCO = Automatic waste feed cutoff.
- (c) AWFCO interlock will not be active during the daily CEM calibration period.

Table 7-2. Interlock Setpoints During Test Periods					
Control Parameters	Interlock Setpoint	Comments ^a			
GROUP A1 PARAMETERS					
Maximum spent carbon feed rate (lb/hr)	3300	Block Hour AWFCO			
Minimum afterburner temperature (°F)	1675	Hourly rolling average AWFCO			
Minimum venturi scrubber pressure differential (in. w.c.)	12	Hourly rolling average AWFCO			
Minimum quench/venturi scrubber total liquid flow rate (gpm)	65	Hourly rolling average AWFCO			
Minimum packed bed scrubber pH	3.0	Hourly rolling average AWFCO			
Minimum packed bed scrubber liquid flow rate (gpm)	50	Hourly rolling average AWFCO			
Minimum wet scrubber blowdown flow rate (gpm)	25	Hourly rolling average AWFCO			
Minimum WESP secondary voltage (kVDC)	12	Hourly rolling average AWFCO			
Maximum stack gas flow rate acfm	11,500	Hourly rolling average AWFCO			
GROUP A2 PARAMETERS					
Maximum stack gas carbon monoxide (ppmvd, @7% oxygen) ^b	100	Hourly rolling average AWFCO			

⁽a) AWFCO = Automatic waste feed cutoff.

⁽b) AWFCO interlock will not be active during the daily CEM calibration period.

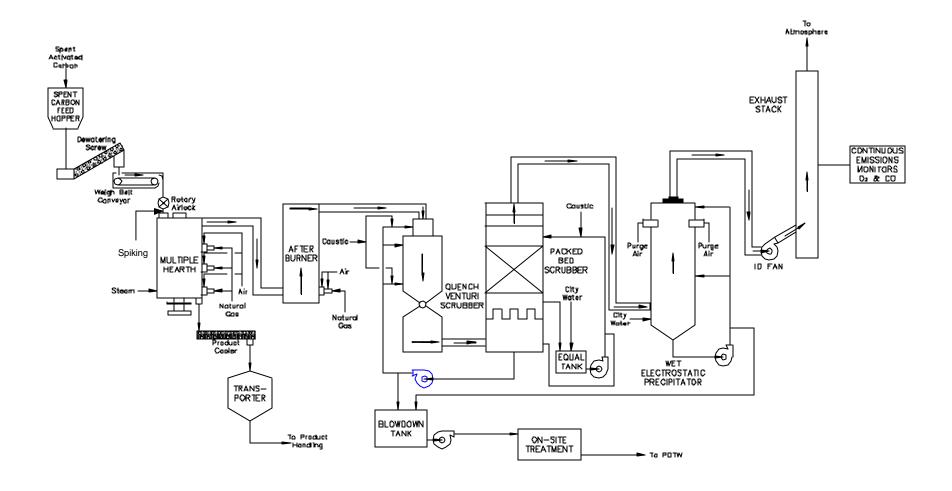


Figure 3-1. Carbon Reactivation Furnace System Block Flow Diagram

F1 Spent Activated Carbon
F2 Packed Bed Scrubber
Feed Rate

Guench/Venturi Scrubber
Recycle Flow Rate (Total)

F3 Packed Bed Scrubber
Recycle Flow Rate

F4 Scrubber Blawdown Flow
Rate

F3 Stack Gas Flow Rate

E1 WESP Secondary Voltage

(T1) Afterburner Temperature

Pl Venturi Scrubber Pressure Differential

> Spent Activated Carpon SPENT CARBON FEED HOPPER EXHAUST STACK CONTINUOUS EMISSIONS MONITORS O2 & CO (A) (A) Weigh Belt Conveyor Cauelic (-3) AFTER BURNER Purge Ali Purge Air Spiking PACKED BED SCRUBBER (**) NULTIPLE HEARTH QUENCH VEN TURI SCRUBBER CT1y Worler Natural Gas EQUAL TANK FZ WET ELECTROSTATIC PRECIPITATOR (F4) TRANS-PORTER BLOWDOWN TANK To Product Handling ON-SITE TREATMENT — To POTW

Figure 3-2. Location of Critical Process Instruments

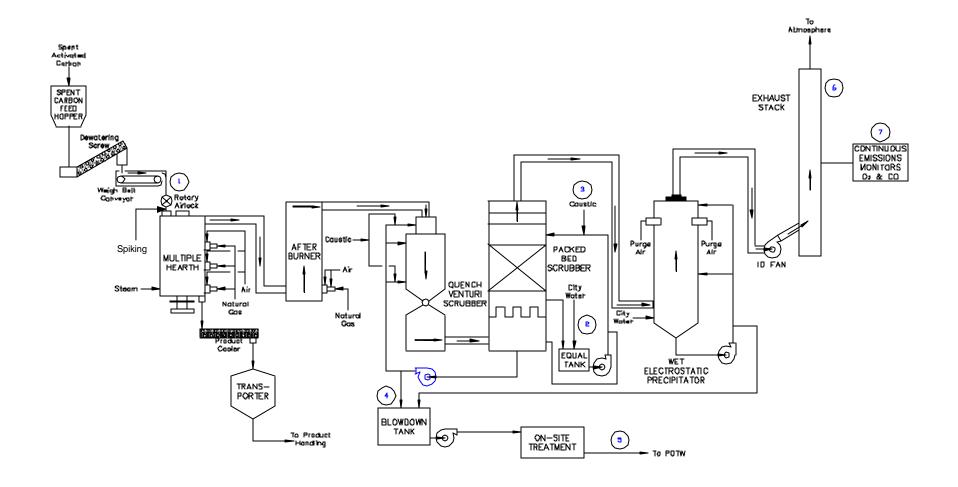


Figure 5-1. Sampling Point Locations

Figure 8-1. Example Performance Test Report Outline

1.0 EXECUTIVE SUMMARY

2.0 TEST PROGRAM SUMMARY

- 2.1 Engineering Description
 - 2.1.1 General Description
 - 2.1.2 Residence Time Determination
 - 2.1.3 Burner Description
 - 2.1.4 Waste Feed Systems
 - 2.1.5 Auxiliary Fuel System
 - 2.1.6 Air Pollution Control System
 - 2.1.7 Process Monitoring System (CMS)
 - 2.1.8 Continuous Emissions Monitoring System (CEMS)
 - 2.1.9 Automatic Waste Feed Cutoff System
- 2.2 Summary of Test Plan and Objectives
- 2.3 Test Implementation Summary
 - 2.3.1 Deviations from the Test Plan

3.0 PROCESS OPERATIONS

- 3.1 Process Operating Conditions
- 3.2 Feed Material Characteristics
- 3.3 Feed Material Spiking
- 3.4 Effluent Characteristics

4.0 COMPLIANCE RESULTS

- 4.1 POHC Destruction and Removal Efficiency
- 4.2 Particulate Emissions
- 4.3 Hydrogen Chloride and Chlorine Emissions
- 4.4 Metals Emissions
- 4.5 Stack Gas Oxygen, Carbon Monoxide, and Total Hydrocarbons
- 4.6 Dioxin and Furan Emissions

5.0 QUALITY ASSURANCE/QUALITY CONTROL RESULTS

- 5.1 QA/QC Activities and Implementation
 - 5.1.1 QA Surveillance
 - 5.1.2 Sample Collection
 - 5.1.3 Sample Analysis
 - 5.1.4 Process Instrumentation
 - 5.1.5 Stack Sampling Equipment
 - 5.1.6 Laboratory Analytical Instrumentation
- 5.2 Audits and Data Validation
- 5.3 Calculations
- 5.4 Conclusions

Figure 8-1. Example Performance Test Report Outline

6.0 ANTICIPATED PERMIT OPERATING CONDITIONS

- **Development of Operating Limits** 6.1
- **Specific Control Parameters** 6.2

7.0 RECOMMENDED EMISSIONS DATA FOR USE IN RISK ASSESSMENT

- 7.1 Metals
- Hydrogen Chloride and Chlorine 7.2
- Particle Size Distribution 7.3
- 7.4 Speciated Volatile Organics
- 7.5 Total Volatile Organics
- 7.6 Speciated Semivolatile Organics
- 7.7 Total Semivolatile and Nonvolatile Organics
- 7.8 Dioxins and Furans
- 7.9 Speciated PAHs
- 7.10 Speciated Organochlorine Pesticides
- 7.11 Speciated PCBs

APPENDICES

- A. Process Operating Data
- B. Test Manager's Log
- C. Spiking Report and Certificate of Analysis for Spiking Material
- D. Process Instrument Calibration Data
- E. Continuous Emissions Monitoring Data
- F. Sampling Report
- G. List of Samples
- H. Analytical Report
- I. Calculations
- J. Documentation to Support Metals ExtrapolationK. Data Validation Report
- L. Corrective Action Requests

PLEASE SEE THE ATTACHED FLASH DRIVE WHICH CONTAINS COMPLETE VOLUMES 1, 2, AND 3

CARBON REACTIVATION FURNACE RF-2 PERFORMANCE DEMONSTRATION TEST REPORT

PREPARED FOR:

SIEMENS WATER TECHNOLOGIES, CORP. 2523 MUTAHAR STREET PARKER, ARIZONA 85344

Revision: 0 June 30, 2006 Focus Project No. 010111

PREPARED BY:

FOCUS ENVIRONMENTAL, INC 9050 EXECUTIVE PARK DRIVE., SUITE A202 KNOXVILLE, TENNESSEE 37923 (865) 694-7517

TABLE OF CONTENTS

VOLUME I

1.0	EXE	CUTIVE SUMMARY	9	
2.0	TEST PROGRAM SUMMARY			
	2.1	Summary of Test Plan and Objectives Test Condition 1 ("Worst-Case" Operations)		
	2.2	Development of Permit Limits	13	
	2.3	Test Implementation Summary	14	
		2.3.1 Test Run Chronology	15	
		2.3.2 Deviations from the Test Plan	17	
3.0	PROCESS OPERATIONS			
	3.1	Process Operating Conditions		
	3.2	Feed Material Characteristics and Constituent Feed Rates	20	
	3.3	Spent Activated Carbon Feed Spiking2		
	3.4	Makeup and Effluent Characteristics2		
4.0	COMPLIANCE RESULTS			
	4.1	POHC Destruction and Removal Efficiency	22	
	4.2	dioxin and furan emissions	22	
	4.3	Particulate Emissions		
	4.4	Hydrogen Chloride and Chlorine Emissions		
	4.5	Metals Emissions		
	4.6	Stack Gas Oxygen, Carbon Monoxide, and Total Hydrocarbons		
5.0	QUALITY ASSURANCE/QUALITY CONTROL RESULTS			
	5.1	QA/QC Activities and Implementation	24	
		5.1.1 QA Surveillance		
		5.1.2 Sample Collection		
		5.1.3 Sample Analysis5.1.4 Operations and Process Instrumentation		
		5.1.5 Stack Sampling Equipment		
		5.1.6 Laboratory Analytical Instrumentation		
	5.2	Audits and Data Validation		
	5.3	Calculations3		
	5.4	Conclusions	31	
6.0	OPERATING Parameter Limits			
	6.1	5.1 Development of Operating Limits		

Performance Demonstration Test Report Siemens Water Technologies Corp. Carbon Reactivation Furnace RF-2 Page 2 of 119

	6.2	Specifi	c Operating Parameters	33
		6.2.1	Parameters Demonstrated During the Test (Group A1 Limits)	33
		6.2.2	Group A2 Parameters	35
		6.2.3	Group B Parameters	36
		6.2.4	Group C3 Parameters	37
	6.3	Extrap	olation of Metals Feed Rate Limits	37
7.0	EMIS	SIONS	DATA to Support the Site Specific Risk Assessment	39
	7.1	Detect	ion Limits	39
	7.2	Metals		39
	7.3	Hydrog	gen Chloride and Chlorine	39
	7.4	Particle	e Size Distribution	40
	7.5	Specia	ited Volatile Organics	40
	7.6	Specia	ted Semivolatile Organics	40
	7.7	Total V	olatile Organics, Semivolatile Organics, and Nonvolatile Organics	40
	7.8	Dioxins	s and Furans	40
	7.9	Specia	ited PAHs	41
	7.10	Polych	lorinated Biphenyls (PCBs)	41
	7 11	Organi	achlarina Paeticidas	/11

APPENDICES

- A. **Process Operating Data**
- B. Test Manager's Log
- C. **Corrective Action Requests**
- D. **Process Sampling Information**
- E. List of Samples
- F. **Analytical Result Summaries**
- G. Calculations
- H. **Data Validation Report**

VOLUME II (on CD)

Airtech, Inc. Stack Sampling Report (Includes particulate matter, M0040 Bag analytical data, and THC CEMS data)

File Name

- ESS, Spiking Report and Certificate of Composition for Spiking Materials J.
- K. **CEMS Performance Specification Test Report**
- **Process Instrument Calibration Data**

Feed and Process Data Packages

VOLUME III (on CD)

A. Feed Ultimate AnalysisB. Feed Total ChlorineC. Feed and Process Volatiles	H6D040101 Carbon Ultimate.pdf H6D040102 Carbon Total Chlorine.pdf H6D030205 Carbon & Process VOC.pdf
D. Feed and Process Semivolatiles	H6D030246 Carbon & Process SVOC.pdf
E. Feed and Process Metals	H6D040213 Carbon & Process Metals.pdf
Stack Gas Data Packages	File Name
A. M5 Particle Size Distribution	142541 M5 PSD.pdf
B. M0030 VOST and First VOST Audit	H6D030169 M0030 VOST & 1 VOST Audit.pdf
C. M0040 Total Volatile Organic Condensate	H6D030177 M0040 CON.pdf
D. M0061 Hexavalent Chromium	H6D030194 M0061 Hex Cr.pdf
E. M29 Metals	H6D030224 M29 Metals.pdf
F. M0010 Total Semivolatile and Nonvolatile Organics	H6D030231 M0010 TCO Grav.pdf
G. M0023A Dioxin and Furans	H6D030236 M0023A D-F.pdf
H. M0010 PCBs and PAHs	H6D030241 M0010 PCB PAH.pdf
I. M0010 SVOCs and OCPs	H6D030245 M0010 SVOC OCP.pdf
J. M26A Chlorine and Hydrogen Chloride	H6D040103 M26A HCl Cl.pdf
K. Second VOST Audit	H6D120117 2 VOST Audit.pdf

LIST OF TABLES

Table 1-1.	Regulatory Compliance Performance and Emissions Summary	44
Table 1-2.	Summary of Process Operating Conditions ^a	45
Table 2-1.	Summary of Planned Sampling Locations, Equipment, and Methods	46
Table 2-2.	Summary of Planned Performance Test Analytical Procedures and Methods	50
Table 3-1.	Process Operating Data Summary - Run 1 ^a	55
Table 3-2.	Process Operating Data Summary - Run 2 ^a	56
Table 3-3.	Process Operating Data Summary - Run 3 ^a	57
Table 3-4.	Feed Material Physical/Chemical Characteristics	58
Table 3-5.	Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs)	59
Table 3-5.	Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs), continued	60
Table 3-5.	Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs), continued	61
Table 3-5.	Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs), continued	62
Table 3-6.	Waste Feed Volatile Organic Compound Concentration	63
Table 3-7.	Waste Feed Semivolatile Organic Compound Concentration	64
Table 3-8.	Summary of Spiking Materials and Rates	65
Table 3-9.	Makeup Water, Caustic, and Scrubber Purge POHC Concentration	66
Table 4-1.	Regulatory Compliance Summary	67
Table 4-2.	POHC Feed Rates, Emissions Rates, and DREs	68
Table 4-3.	PCDD/PCDF Emission Summary – Run 1	69
Table 4-4.	PCDD/PCDF Emission Summary – Run 2	70
Table 4-5.	PCDD/PCDF Emission Summary – Run 3	71
Table 4-6.	Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 1	72
Table 4-7.	Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 2	73
Table 4-8.	Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 3	74
Table 4-9.	Metals Emission Summary – Run 1	75
Table 4-10	. Metals Emission Summary – Run 2	76
Table 4-11	. Metals Emission Summary – Run 3	77
Table 5-1.	VOST Audit Sample Results	78
Table 6-1.	Proposed Operating Parameter Limits	79
	Metals System Removal Efficiency	
Westates I	PDT Report Rev 0.doc Revis	sion: 0

Table 7-1. Metals Emission Summary – Run 1	81
Table 7-2. Metals Emission Summary – Run 2	82
Table 7-3. Metals Emission Summary – Run 3	83
Table 7-4. Mercury Speciation	84
Table 7-5. Hexavalent Chromium Emission Summary – Run 1	85
Table 7-6. Hexavalent Chromium Emission Summary – Run 2	86
Table 7-7. Hexavalent Chromium Emission Summary – Run 3	87
Table 7-8. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 1	88
Table 7-9. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 2	89
Table 7-10. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 3	90
Table 7-11. Particle Size Distribution	91
Table 7-12. Speciated Volatile Organic Compound Emissions – Run 1	92
Table 7-13. Speciated Volatile Organic Compound Emissions – Run 2	93
Table 7-14. Speciated Volatile Organic Compound Emissions – Run 3	94
Table 7-15. Speciated Semivolatile Organic Compound Emissions – Run 1	95
Table 7-16. Speciated Semivolatile Organic Compound Emissions – Run 2	96
Table 7-17. Speciated Semivolatile Organic Compound Emissions – Run 3	97
Table 7-18. Total Volatile Organic Compound Emissions (C1 – C7) – Run 1	98
Table 7-19. Total Volatile Organic Compound Emissions (C1 – C7) – Run 2	99
Table 7-20. Total Volatile Organic Compound Emissions (C1 – C7) – Run 3	100
Table 7-21. Total Semivolatile and Nonvolatile Organic Emissions – Run 1	101
Table 7-22. Total Semivolatile and Nonvolatile Organic Emissions – Run 2	102
Table 7-23. Total Semivolatile and Nonvolatile Organic Emissions – Run 3	103
Table 7-24. PCDD/PCDF Emission Summary – Run 1	104
Table 7-25. PCDD/PCDF Emission Summary – Run 2	105
Table 7-26. PCDD/PCDF Emission Summary – Run 3	106
Table 7-27. PCDD/PCDF Congener and TEQ Emissions – Run 1	107
Table 7-28. PCDD/PCDF Congener and TEQ Emissions – Run 2	108
Table 7-29. PCDD/PCDF Congener and TEQ Emissions – Run 3	109
Table 7-30. PAH Compound Emissions – Run 1	110
Table 7-31. PAH Compound Emissions – Run 2	111
Table 7-32. PAH Compound Emissions – Run 3	112
Table 7-33. PCB Emissions – Run 1	113
Table 7-34. PCB Emissions – Run 2	114
Table 7-35. PCB Emissions – Run 3	115
Table 7-36. Organochlorine Pesticide Emissions – Run 1	116
W + + BEED + B - O +	

Westates PDT Report Rev 0.doc

Revision: 0

Date: 06/30/06

ACRONYMS AND ABBREVIATIONS

acfm Actual cubic feet per minute

APC Air pollution control

ASTM American Society for Testing and Materials

AWFCO Automatic waste feed cutoff

B.P. Boiling point
Btu British thermal unit
CAR Corrective Action Request

CAA Clean Air Act

CARB California Air Resources Board

CEM or CEMS Continuous emission monitor or Continuous emission monitoring system

CFR Code of Federal Regulations

cm Centimeters
CO Carbon monoxide

COPCs Compounds of potential concern CRIT Colorado River Indian Tribes

cu. ft. Cubic foot

CVAAS Cold vapor atomic absorption spectroscopy

DC Direct current

DOT Department of Transportation

DQO Data Quality Objective

DRE Destruction and removal efficiency

dscf Dry standard cubic foot

dscfm Dry standard cubic feet per minute

dscm Dry standard cubic meters

EPA United States Environmental Protection Agency

FID Flame ionization detector

ft Feet Gram

GC/FID Gas chromatography/flame ionization detector GC/MS Gas chromatography/mass spectrometry

gpm U.S. Gallons per minute gr Grain (equals 1/7000 pound)

GRAV Gravimetric

HAP Hazardous air pollutant HCI Hydrogen chloride

HPLC High performance liquid chromatography

hr Hour

HRGC/HRMS High resolution gas chromatography/high resolution mass spectrometry
HWC MACT Hazardous Waste Combustor Maximum Achievable Control Technology

regulations

ICP Inductively coupled plasma spectroscopy

in Inch

in w.c. Inches of water column (pressure measurement)

kg Kilogram
L Liter
Ib Pound

lpm Liters per minute

m Meter mg Milligram ml Milliliter

MTEC Maximum theoretical emission concentration

NDIR Non-dispersive infrared

Date: 06/30/06

Performance Demonstration Test Report Siemens Water Technologies Corp. Carbon Reactivation Furnace RF-2 Page 8 of 119

ng Nanogram

NVOC Nonvolatile organic compound
P&ID Piping and instrumentation diagram

PAH Polyaromatic hydrocarbon PCB Polychlorinated biphenyl

PCDD/PCDF Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans

PDT Performance Demonstration Test
PDTP Performance Demonstration Test Plan

PFD Process flow diagram

PIC Product of incomplete combustion PLC Programmable logic controller

POHC Principal organic hazardous constituent

POTW Publicly owned treatment works

ppm Parts per million

ppmv Parts per million by volume

ppmvd Parts per million by volume, dry basis psig Pounds per square inch, gauge

QA Quality assurance

QAPP Quality Assurance Project Plan

QC Quality control

RCRA Resource Conservation and Recovery Act

RF Reactivation Furnace

s Second

scfm Standard cubic feet per minute SOP Standard operating procedure

sq. ft. Square feet

SQL Sample quantitation limit
SVOC Semivolatile organic compound
TCDD Tetrachloro dibenzo-p-dioxin
TCO Total chromatographable organics

TEQ Toxicity equivalent (related to 2,3,7,8-TCDD)

THC Total hydrocarbons

TIC Tentatively identified compound

TOE Total organic emissions
TSCA Toxic Substances Control Act

ug Microgram

VOA Volatile organic analysis
VOC Volatile organic compound
VOST Volatile organic sampling train
WESP Wet electrostatic precipitator

w.c. Water column

XAD Brand name for Amberlite XAD-2 adsorbent resin

Westates PDT Report Rev 0.doc

1.0 EXECUTIVE SUMMARY

A Performance Demonstration Test (PDT) of the Carbon Reactivation Furnace RF-2 at the Siemens Water Technologies Corp. (formerly known as U.S. Filter Westates) Facility located in the Colorado River Indian Tribes (CRIT) Industrial Park near Parker, Arizona was conducted in March 2006.

The facility treats spent activated carbon that has been used by industry, state and federal government agencies, and municipalities for the removal of organic compounds from liquid and vapor phase process waste streams. Once the carbon has been used and is spent, it must be either disposed of or reactivated at a facility such as Siemens Water Technologies Corp.. A Carbon Reactivation Furnace (designated as RF-2) is used by Siemens Water Technologies Corp. to reactivate the spent carbon. Some of the carbon received at the Parker facility is designated as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) regulations. Much of the carbon received at the facility is not a RCRA hazardous waste, as it is either not a characteristic or listed waste. The RF is not a hazardous waste incinerator. "Hazardous waste incinerator" is defined in 40 CFR Part 63, Subpart EEE as a "device defined as an incinerator in § 260.10 of this chapter and that burns hazardous waste at any time." (40 CFR 63.1201). "Incinerator" is defined in 40 CFR 260.10 as "any enclosed device that: (1) Uses controlled flame combustion and neither meets the criteria for classification as a boiler, sludge dryer or carbon regeneration unit, nor is listed as an industrial furnace; or (2) Meets the definition of infrared incinerator or plasma arc incinerator. (emphasis supplied)" The RF-2 unit does not qualify as an incinerator and instead is designated by Subpart X of the RCRA regulations as a Miscellaneous Unit. According to 40 CFR 264.601 of the Subpart X regulations, permit terms and provisions for a Miscellaneous Unit must include appropriate requirements of 40 CFR Subparts I through O and Subparts AA through CC, 40 CFR 270, 40 CFR 63 Subpart EEE, and 40 CFR 146.

Based on 40 CFR 264.601, Siemens Water Technologies Corp. tested the RF-2 unit to demonstrate performance and to establish operating parameter limits in accordance with the standards of 40 CFR 63 Subpart EEE. The emission standards of 40 CFR 63 Subpart EEE are more stringent than the RCRA hazardous waste incinerator emission standards of 40 CFR 264 Subpart O. The regulations at 40 CFR 63 Subpart EEE are often referred to as the Hazardous Waste Combustor Maximum Achievable Control Technology (HWC MACT) standards. This terminology will be used in this document.

The testing was conducted in accordance with the requirements of the HWC MACT standards and the approved PDT plan. The testing consisted of a Performance Demonstration Test of the RF-2 unit and a Continuous Emissions Monitoring Systems (CEMS) test. The CEMS testing was conducted just prior to the RF-2 PDT. The formal PDT was conducted on March 27 through March 30, 2006.

Westates PDT Report Rev 0.doc

The carbon reactivation process consists of a multiple hearth reactivation furnace, a natural gas fired afterburner used to destroy organic contaminants released from the carbon, a wet quench, venturi scrubber, packed bed scrubber, and wet electrostatic precipitator.

The purpose of the PDT was to:

- 1. Demonstrate Compliance with Applicable USEPA Regulatory Performance Standards (Based on HWC MACT Standards for Existing Hazardous Waste Incinerators):
 - Demonstrate a DRE of greater than or equal to 99.99% for the selected principal organic hazardous constituents (POHCs) chlorobenzene and tetrachloroethene.
 - Demonstrate stack gas carbon monoxide concentration less than or equal to 100 ppmv, dry basis, corrected to 7% oxygen.
 - Demonstrate stack gas hydrocarbon concentration of less than or equal to 10 ppmv, as propane, dry basis, corrected to 7% oxygen.
 - Demonstrate a stack gas particulate concentration less than or equal to 34 mg/dscm (0.015 gr/dscf) corrected to 7% oxygen.
 - Demonstrate that the stack gas concentration of hydrogen chloride (HCl) and chlorine (Cl₂) are no greater than 77 ppmv, dry basis, corrected to 7% oxygen, expressed as HCl equivalents.
 - Demonstrate that the stack gas mercury concentration is less than or equal to 130 μg/dscm, corrected to 7% oxygen.
 - Demonstrate that the stack gas concentration of semivolatile metals (cadmium and lead, combined) is less than or equal to 240 μg/dscm, corrected to 7% oxygen.
 - Demonstrate that the stack gas concentration of low volatility metals (arsenic, beryllium, and chromium, combined) is less than or equal to 97 μ g/dscm, corrected to 7% oxygen.
 - Demonstrate that the stack gas concentration of dioxins and furans does not exceed 0.40 ng/dscm, corrected to 7% oxygen, expressed as toxic equivalents of 2,3,7,8-TCDD (TEQ). This is the applicable standard since the gas temperature entering the first particulate matter control device is less than 400°F.

2. Establish Permit Operating Limits

- Demonstrate maximum feed rate for spent activated carbon.
- Demonstrate minimum afterburner gas temperature
- Demonstrate maximum combustion gas velocity (or a suitable surrogate indicator)
- Demonstrate maximum total chlorine/chloride feed rate
- Establish a Maximum Theoretical Emission Concentration (MTEC) limit for mercury
- Demonstrate system removal efficiency (SRE) for semivolatile and low volatility metals so feed rate limits can be developed by extrapolation from test results.
- Establish appropriate operating limits for the air pollution control system components.

Westates PDT Report Rev 0.doc

- 3. Gather Information for Use in a Site-Specific Risk Assessment
 - Measure emissions of metals, including hexavalent chromium
 - Measure emissions of specific volatile and semivolatile products of incomplete combustion (PICs)
 - Measure emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF)
 - Measure emissions of polychlorinated biphenyls (PCBs)
 - Measure emissions of specific organochlorine pesticides
 - Measure emissions of total volatile, semivolatile, and nonvolatile organics
 - Determine the stack gas particle size distribution.

A summary of the PDT performance and emission results is presented in Table 1-1. A summary of the process operating conditions for each run is presented in Table 1-2.

The PDT results indicate that the RF-2 unit meets the applicable performance requirements. Specific conclusions drawn from the PDT are as follows:

- The RF-2 system operated reliably during each PDT run, and was able to maintain operating conditions which were consistent with the target values stated in the PDT Plan. The test results are suitable for establishing operating parameter limits.
- DRE requirements of 99.99% or greater were met for both POHCs (monochlorobenzene and tetrachloroethene). Minimum temperature limits and maximum flue gas flow rate limits can be appropriately established from the test results.
- PCDD/PCDF emission standards were met.
- Particulate matter emission standards were met.
- Metal emission standards were met for mercury, semivolatile metals, and low volatility metals. Maximum metal feed rates can be reliably determined using the test results.
- Stack gas CO and THC concentration standards were met in all test runs.
- Stack gas HCl/Cl₂ emission requirements were met. Maximum total chlorine and chloride feed rate limits can be appropriately established from the test results.
- Emissions data to support the estimates of risk in a site-specific multi-pathway human health and ecological risk assessment were gathered successfully.

Continued operation of the Siemens Water Technologies Corp. Carbon Reactivation Furnace RF-2 under the conditions established by the PDT will result in effective destruction of organic compounds, and control of emissions in accordance with the applicable performance requirements.

Westates PDT Report Rev 0.doc

2.0 TEST PROGRAM SUMMARY

2.1 SUMMARY OF TEST PLAN AND OBJECTIVES

In order to accomplish the PDT objectives, (i.e., demonstrating that the unit will meet all applicable environmental performance standards) a single test condition representing "worst case" operations of minimum temperature, maximum combustion gas velocity (minimum residence time), and maximum spent activated carbon feed rate was performed. The test consisted of three replicate sampling runs.

A summary description of the planned testing conditions, analytical parameters, and sampling methods follows:

Test Condition 1 ("Worst-Case" Operations)

Sampling and monitoring protocols that were planned for the performance test are summarized as follows:

- Spent Activated Carbon Feed total chlorine/chloride, elemental (C, H, N, O, S, moisture), volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Makeup Water volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Caustic feed to APC volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Cu, Co, Pb, Hg, Ag, Tl, Se, Ni, V, Zn)
- Scrubber Blowdown volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Wastewater Discharge to POTW volatile organics, semivolatile organics, and total metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, Zn)
- Stack gas particulate, HCl, and Cl₂ using EPA Method 26A
- Stack gas target volatile organics using VOST, SW-846 Method 0030
- Stack gas target semivolatile organics and organochlorine pesticides using SW-846 Method 0010
- Stack gas PAHs and PCBs using a separate SW-846 Method 0010 sampling train
- Stack gas PCDD/PCDF using SW-846 Method 0023A
- Stack gas total volatile organics using SW-846 Method 0040
- Stack gas total semivolatile and nonvolatile organics using SW-846 Method 0010
- Stack gas metals (Al, Sb, As, Ba, Be, Cd, total Cr, Co, Cu, Pb, Hg, Ni, Se, Ag, Tl, V, and Zn) using EPA Method 29
- Stack gas hexavalent chromium using SW-846 Method 0061
- Stack gas particle size distribution using a cascade impactor

Westates PDT Report Rev 0.doc

- Stack gas CO and O₂ by permanently installed CEM according to the protocols in the Appendix to 40 CFR 63, Subpart EEE; Performance Specification 4B of 40 CFR 60, Appendix B.
- Stack gas total hydrocarbons (as propane) by temporary CEM according to EPA Method 25A and the protocols in the Appendix to 40 CFR 63, Subpart EEE.

Tables 2-1 and 2-2 present the planned PDT sampling and analytical protocol in greater detail. Figure 2-1 shows the location of sampling points in the RF-2 system.

2.2 DEVELOPMENT OF PERMIT LIMITS

Siemens Water Technologies Corp. is required to establish operating limits (applicable whenever hazardous waste is in the combustion chamber) in its permit to ensure that the RF-2 system complies with the applicable USEPA environmental performance standards at all times. Under the HWC MACT, the regulations establish a comprehensive list of regulated parameters at 40 CFR 63.1209 (j) through (p) which are used to ensure continuing regulatory compliance.

Considering the configuration of the RF-2 system and the characteristics of the spent activated carbon to be fed, Siemens Water Technologies Corp. anticipated establishing process operational limits on the following parameters, and operated the system accordingly during the PDT:

- Minimum afterburner gas temperature
- Maximum spent activated carbon feed rate
- Maximum total chlorine and chloride feed rate
- Maximum feed rate of mercury (based on MTEC)
- Maximum feed rate of semivolatile metals (total combined lead and cadmium)
- Maximum feed rate of low volatility metals (total combined arsenic, beryllium, and chromium)
- Minimum venturi scrubber pressure differential
- Minimum quench/venturi scrubber total liquid flow rate
- Minimum packed bed scrubber pH
- Minimum packed bed scrubber pressure differential
- Minimum packed bed scrubber liquid flow rate
- Minimum scrubber blowdown flow rate
- Minimum WESP secondary voltage
- Maximum stack gas flow rate (indicator of combustion gas velocity).

Westates PDT Report Rev 0.doc

These operating limits have been established as described in the HWC MACT regulations and in the approved Performance Demonstration Test Plan, and are more fully described in Section 7.0 of this test report.

As part of EPA's approval of the PDT Plan, Siemens Water Technologies Corp. was also required to establish both a minimum and maximum temperature limit for Hearth #5 of the reactivation furnace. Since both a minimum and maximum temperature could not be demonstrated in the single test condition approved for the test, Siemens Water Technologies Corp. operated Hearth #5 at a maximum temperature during the PDT and will conduct a separate minimum temperature test outside of the formal PDT period.

2.3 TEST IMPLEMENTATION SUMMARY

Overall, the PDT was executed in substantial conformance with the approved protocols contained in the PDT Plan and Quality Assurance Project Plan (QAPP). This section presents an account of the PDT implementation.

The Performance Demonstration Test of the Siemens Water Technologies Corp. carbon reactivation furnace RF-2 located in the Colorado River Indian Tribes Industrial Park near Parker, Arizona was conducted during the week of March 27 - 31, 2006. Actual emissions sampling was conducted on March 28 through March 30. All planned testing for the PDT was completed.

All process operating conditions were within the operating envelope defined by the specifications provided in the PDT Plan. All sampling and analysis was performed as described in the PDT Plan and QAPP, with minor deviations as described in Section 2.3.2 below.

The PDT was conducted in compliance with the PDT Plan approved by the US Environmental Protection Agency (EPA) and CRIT. The PDT program was conducted under the overall direction of Siemens Water Technologies Corp. personnel. Mr. Monte McCue was the overall CPT Manager for Siemens Water Technologies Corp. Mr. Willard (Drew) Bolyard of Siemens Water Technologies Corp. oversaw plant personnel and operations during the PDT. Ms. Mary Blevins, Ms. Stacy Braye, Mr. Steven Arman, Mr. Robert Fitzgerald, Mr. Michael Svizzero, and Ms. Karen Scheuerman of USEPA were on-site to observe portions of the PDT. Mr. Hector Duran observed the PDT as a representative of CRIT. Mr. Marty Jones and Mr. Chase McLaughlin of Arcadis also observed the PDT as consultants to CRIT. Process operations were conducted by Siemens Water Technologies Corp. personnel, with the assistance of Mr. Karl Monninger of Chavond Barry Engineering. Mr. Anthony Eicher, of Focus Environmental, Inc. (Focus), coordinated and oversaw all technical aspects of the test program, and acted as the PDT

Westates PDT Report Rev 0.doc

Manager. Mr. Eicher was also responsible for the preparation of this report, and provided overall QA/QC for the project. Ms. Teresa White, of Focus, acted as the on-site sample coordinator for the test. She also served as the Quality Assurance Officer for the PDT analytical activities, and performed data validation of the process sample and emissions results. Process samples were collected by Focus and Siemens Water Technologies Corp. personnel, under the direction of Focus. A number of process samples were provided as split samples to Ms. Kathy Baylor of EPA, who was on site to coordinate the collection and packaging of the split samples. All stack gas samples were collected by Airtech Environmental Services, Inc. (Airtech), under the direction of Mr. Pat Clark. Waste feed spiking services were provided by Engineered Spiking Solutions, Inc. (ESS), under the direction of Dr. William Schofield, with field spiking services provided by Mr. Scott Neal. PDT sample analyses were performed by the following laboratories:

- Airtech conducted the analysis of stack gas particulate matter samples and provided onsite analytical services for the determination of total volatile organics. Airtech also operated a temporary CEM systems for THC during the PDT.
- 2. Severn-Trent Laboratories of Knoxville, Tennessee, under the direction of Dr. William Anderson, performed the analyses for all process and stack gas samples, with the exception of the stack gas particulate matter and particle size distribution.
- MVA, Inc. of Atlanta, Georgia, conducted the stack gas particle size determination, under sub-contract to Severn-Trent Laboratories.

2.3.1 Test Run Chronology

The test team arrived on-site and set up equipment for the test on March 27, 2006. Coordination meetings were held between the test team members to ensure that all were familiar with the test protocols and that operators understood the desired test conditions.

During the initial meetings with the test team, a number of minor modifications to the test plan were discussed based on comments received from EPA after approval of the plan, and based on input from the other test team members based on observations during preliminary testing and subsequent sample analysis. The majority of these items have been documented through the use of Corrective Action Requests (CARs) as provided for in the approved Quality Assurance Project Plan (QAPP) and are discussed in detail in later section of this report. CARs were reviewed and approved by appropriate members of the team during the course of the PDT.

The test team arrived on site at or before 07:00 on March 28, 2006. The RF-2 system was near the target operating conditions when the team arrived. POHC spiking was started at 07:30 and spiking of the organic surrogate mixture and metals started at 07:50. The entire RF-2 unit experienced a shutdown at

Westates PDT Report Rev 0.doc

07:56 due to over-amperage of the ID fan. All spiking was stopped immediately. The plant recovered quickly from the shutdown and spiking operations were re-started at 08:59. Preliminary stack gas flow traverses were conducted and final preparations were made for the beginning of testing.

PDT Run 1 was started at 12:10 on March 28, 2006.

PDT Run 1 was completed at 16:44 on March 28, 2006, without interruption. All stack gas sampling trains were successfully leak checked prior to the start of sampling, during port changes, and upon completion of sampling and were recovered once the run was complete.

On March 29, 2006, the testing crew arrived on-site at 08:00 and began setting up for PDT Run 2. Spiking operations were started at 08:58. Plant personnel made a number of adjustments to the furnace in order to maintain the stack gas flow rate near the desired conditions.

PDT Run 2 was started at 11:15 on March 29, 2006.

As the Method 0023A sampling train was being moved to the last traverse point in the first half of the run, the glass probe liner broke. The sampling team and regulatory observers noticed the break immediately when it occurred, and the sampling team shut down the sample pump. Since it was known when the break occurred and sampling was immediately stopped, it was decided to recover both parts of the broken probe liner, replace the probe, and continue sampling. All parties were aware of the situation and approved of the action taken.

PDT Run 2 was completed at 17:00 on March 29, 2006, without further sampling difficulties. All stack gas sampling trains were successfully leak checked prior to the start of sampling, during port changes, and upon completion of sampling and were recovered once the run was complete. There were no process interruptions during the run.

On March 30, 2006, the testing team arrived at or before 08:00 and began setting up for PDT Run 3. All process conditions were at their target values, and spiking started at 08:50.

At 08:58 a weld on the nipple attached to the carbon feed chute used for spiking material injection was noticed to be cracked. Spiking was immediately stopped and the weld was repaired. Spiking resumed at 10:13 on March 30, 2006.

PDT Run 3 was started at 11:50 on March 30, 2006.

All sampling activities were placed on hold at 12:39 when it was noted that the organic surrogate mixture was not flowing correctly through the spiking system. The other spiking systems continued to operate and process conditions were maintained while the problem with the organic surrogate mixture spiking system was identified and corrected.

Organic surrogate spiking was resumed at 14:43 and all sampling was resumed at 15:30 on March 30, 2006.

PDT Run 3 was completed at 19:16 on March 30, 2006. As the PSD sampling train was being recovered it was noted that the filter had gotten wet, thus potentially compromising the sample. Another PSD sample was collected as quickly as possible and finished at 19:59. Since all other samples had finished at 19:16, all parties involved in testing decided to designate 19:16 as the official run completion time. All stack gas sampling trains were successfully leak checked prior to the start of sampling, during port changes, and upon completion of sampling and were recovered once the run was complete. There were no process interruptions during the run.

On March 31, 2006 the test team dismantled all testing and spiking equipment, packaged samples for shipment to the laboratory, and departed the site. Sample packaging and shipping were handled by Focus and Airtech personnel.

2.3.2 Deviations from the Test Plan

Siemens Water Technologies Corp. conducted preliminary testing prior to the formal PDT in order to ensure that all process, spiking, sampling, and analytical systems and procedures were appropriate, and that the test team could identify and resolve any major issues prior to the formal PDT. During the preliminary testing and subsequent planning activities, several items were identified and corrective actions were initiated. These were documented through Corrective Action Requests (CARs) as provided for in the QAPP. Additionally, EPA provided Siemens Water Technologies Corp. with certain data submittal requests in the test plan approval letter, and also required Siemens Water Technologies Corp. to establish additional operating parameters (Hearth #5 minimum and maximum temperature) that were not addressed in the approved test plan. Additionally, conditions during the test dictated that several field directives be given; some of which warranted documentation through the CAR process.

A total of eight CARs were generated during the PDT and are shown in Appendix C. Additional verbal directives were given in the field and to the laboratory during the course of the PDT program. Each corrective action and verbal directive is discussed fully in Section 5.0, and is summarized below:

- The selected laboratory for the performance test has a slightly different target analyte list compared to those presented in the original test plan. Revised target analyte lists were presented to EPA and were approved for use in the test. This is documented as CAR-001.
- The original test plan calls for an organic surrogate mixture to be added to the spent activated carbon feed. That mixture was specified to contain 1,1,1-Trichloroethane, however the compound is not available because it is an ozone depleting substance. Methylene chloride was substituted for 1,1,1-trichloroethane. This is documented as CAR-002.
- 3. Based on observations made during preliminary testing, it was believed that the high stack gas moisture content and low particulate matter concentration would not be conducive to the use of a Cascade Impactor, which was originally planned for collection of particle size distribution data. Therefore, a Method 5 train, employing a smooth filter media was used to collect particulate matter samples, followed by scanning electron microscope examination of the particles to determine the particle size distribution. This is documented as CAR-003.
- 4. Prior to the test, the analytical laboratory expressed concern that analytical surrogate compounds placed onto the adsorbent resin in some of the sampling trains might be stripped off unless sampling is conducted at very low sampling rates. In order to address this concern, all semivolatile organic sampling trains were operated for a nominal sampling run time of 4 hours instead of the planned nominal sampling time of three hours. The same nominal volume of sample was collected over the four hour period that would have been collected in three hours. This represents a very conservative approach to the issue, and is documented as CAR-004.
- 5. EPA indicated that a minimum temperature limit must be established for Hearth #5 in the reactivation furnace. This condition was not anticipated, nor was it addressed in the Performance Demonstration Test Plan. After discussions with EPA, it was decided that a separate test will be conducted outside the formal PDT test period where a minimum Hearth #5 temperature will be maintained and the resulting reactivated carbon will be analyzed for organics. This is documented as CAR-005.
- 6. Several modifications to the target operating conditions and anticipated permit limits were made after approval of the Performance Demonstration Test Plan. Most of these changes were made as a result of preliminary testing. Additionally, EPA included with their test plan approval letter a table of information and process data that they wanted included in the test report. Revised operating condition targets and the list of data requested by EPA are documented as CAR-006.
- 7. During Run 2 of the PDT, the glass probe liner on the M0023A train was broken due to high winds swinging the sampling train as it was being moved from one traverse point to another. The stack sampling crew and regulatory observers noted the break and immediately stopped sampling. Upon investigation, it was found that both pieces of the broken probe liner could be retrieved and that the sampling train leak-checked from the break through the remainder of the train. All parties agreed that there was no impact on sample integrity, so the broken probe liner pieces were caped, taken to the recovery area and rinsed. The probe liner was replaced and the train was used to complete the sampling run. The rinse of the broken probe liner pieces was combined with the final train rinse to capture the entire sample. This is documented as CAR-007.

Westates PDT Report Rev 0.doc

- 8. In order to maximize the stack gas flow rate (minimize the gas residence time) for the performance test, a source of additional air was needed beyond what is normally supplied by the combustion air fan. The access door on Hearth #1 was opened to allow additional air to be drawn into the system and to pass through the combustion and air pollution control portions of the system. This is documented as CAR-008.
- 9. Makeup water samples were planned to be collected only once, at the beginning of the test. Siemens Water Technologies Corp. personnel were concerned however, that the quality of the makeup water could change significantly over time, thus makeup water samples were collected at the beginning of each test run. This modification increased the number and frequency of makeup water samples.
- 10. In order to keep any water droplets and particulate matter from entering the M0040 sampling train, a glass wool plug was inserted into the sample probe. This was not described in the test plan, but was deemed to be a good operating practice for this train.
- 11. At the end of Run 1, the Test Manager noticed that the silica gel in the M0061 train was quite wet. The sampling team was directed to add an additional silica gel impinger to the M0061 train to prevent this situation from occurring again. A check of the moisture determination from the M0061 train used in Run 1 was compared to the moisture determinations from the other Run 1 trains, and found to be consistent. Thus there was no adverse impact on the Run 1 M0061 sample.
- 12. It was noted that Siemens Water Technologies Corp.'s installed stack gas flow rate monitor was not corresponding with the Pitot tube readings of the stack sampling team. Further investigation indicated that some type of fault in the stack gas flow rate monitor was being experienced, however it was not able to be corrected during the course of the PDT. All parties were informed of the situation, and a decision was made to complete the PDT and to use the average of the stack gas sampling train flow rate determinations from each run to set the maximum stack gas flow rate operating limit for the system. Siemens Water Technologies Corp. will need to correct the fault in the stack gas flow rate monitoring system in order to demonstrate continuing compliance with the operating limit.

All other testing and process operations were conducted in conformance with the approved PDT Plan and QAPP. EPA also requested that split samples of the process feed materials and effluents be provided. Additional sample volume was collected accordingly, and samples were split with EPA.

A few analytical quality control determinations showed non-conformances with the target data quality objectives. However, none of these non-conformances are deemed to have had a significant negative impact on the PDT results or conclusions. These items are discussed in Section 5.0 of the report and in the Data Validation Report in Appendix H.

Westates PDT Report Rev 0.doc

3.0 PROCESS OPERATIONS

3.1 PROCESS OPERATING CONDITIONS

Key process operating parameters were continuously monitored and recorded during each test run by the process computer system. Process operating data were stored on magnetic disk at one-minute intervals during each test run. Appendix A presents complete printouts of the process operating data from each test run.

Manual logs were kept during the PDT to record the times when sampling runs were started, stopped, and/or interrupted. The PDT Manager's manual log is included in Appendix B. Tables 3-1 through 3-3 summarize key operating data collected during each PDT run.

Key process instruments were calibrated prior to the PDT. The CEM system underwent a Performance Specification Test prior to the PDT, and underwent daily calibration checks during the PDT. The Performance Specification Test and each daily calibration check showed the CEM system to be operating within specifications. A copy of the CEMS Performance Specification Test Report is included in Appendix K. Process instrument calibration data is presented in Appendix L.

3.2 FEED MATERIAL CHARACTERISTICS AND CONSTITUENT FEED RATES

The spent activated carbon feed to RF-2 was sampled at 15-minute intervals and composited during each PDT run. Makeup water samples were collected at the beginning of each run. Caustic used in the APC system was sampled once for the PDT program. Feed sampling logs, as well as other sampling information, are summarized in Appendix D. A list of samples is presented in Appendix E. Analyses of the feed samples, as well as summaries of all CPT analytical results are shown in Appendix F. Feed material physical/chemical characteristics are presented in Table 3-4. Constituent feed rate information (e.g., total chlorine/chloride, metals, and each POHC) is presented in Table 3-5. Table 3-6 presents volatile organic feed data. Semivolatile organic feed data are presented in Table 3-7. Example calculations are presented in Appendix G. (Note that the complete sampling report and full analytical data packages have been submitted as separate volumes.)

Westates PDT Report Rev 0.doc

3.3 SPENT ACTIVATED CARBON FEED SPIKING

Monochlorobenzene and tetrachloroethene (perchloroethylene) were the designated POHCs, and were spiked onto the spent activated carbon feed in all PDT runs. Lead and chromium were spiked onto the spent activated carbon feed during each run to represent semivolatile, and low volatility metals, respectively. Additionally an organic surrogate mixture of methylene chloride, toluene, naphthalene, and ethylene glycol was added to the spent activated carbon to increase the organic loading and to provide a variety of compounds for the formation of a broad array of emission products. Spiking was conducted downstream of the feed sampling point, using metering pumps and mass flow meters, backed up by calibrated electronic scales. Spiking rates are summarized in Table 3-8. A complete spiking report is presented in Appendix J. The spiking report contains copies of all field data sheets, calibrations and spiking material composition certifications.

3.4 MAKEUP AND EFFLUENT CHARACTERISTICS

Makeup water and caustic solution are added to the scrubbing system. Effluent streams are the scrubber blowdown water and POTW discharge. Results of the makeup and effluent material analyses are summarized in Table 3-9. Summaries of all analyses are presented in Appendix F. Complete analytical data packages have been submitted as separate volumes.

Westates PDT Report Rev 0.doc

4.0 COMPLIANCE RESULTS

Using the process operating data and analytical results from the PDT program, the performance of the Siemens Water Technologies Corp. Carbon Reactivation Furnace RF-2 system was determined and compared to the performance requirements specified for the facility. The PDT demonstrated the RF-2 unit's ability to meet all regulatory requirements. Table 4-1 presents performance results for each key parameter during the PDT, and compares the performance results with target criteria. Example calculations for each performance determination are shown in Appendix G.

Stack gas sampling was conducted by Airtech Environmental Services, Inc. Summaries of the sampling conditions are presented in each table of stack emission results. A complete report of Airtech's sampling results, including all field data sheets, calibration records, and calculations is presented in Appendix I. Example calculations for each PDT determination are presented in Appendix G. Analytical summaries are presented in Appendix F. Complete analytical data packages are presented in separate volumes.

4.1 POHC DESTRUCTION AND REMOVAL EFFICIENCY

Monochlorobenzene and tetrachloroethene were designated as the POHCs for the test. DRE results are summarized in Table 4-2. The PDT demonstrated that the RF-2 unit achieved a DRE of greater than 99.99% for each POHC in all runs.

4.2 DIOXIN AND FURAN EMISSIONS

Dioxin and furan sampling results and emission concentrations are presented in Tables 4-3 through 4-5. The data presented show the PCDD/PCDF emissions are in compliance with the HWC MACT standard of 0.40 ng TEQ/dscm corrected to 7% O₂ applicable to existing systems with a temperature at the entrance to the primary particulate matter control device of 400°F or less. [40 CFR 63.1203(a)(1)(ii)].

4.3 PARTICULATE EMISSIONS

Particulate matter sampling results and emission concentrations are shown in Tables 4-6 through 4-8. Particulate matter concentrations met the regulatory requirement for the PDT in all runs.

4.4 HYDROGEN CHLORIDE AND CHLORINE EMISSIONS

Tables 4-6 through 4-8 presents the results of HCl and Cl₂ emissions determinations during the PDT. HCl/Cl₂ emission concentrations were significantly below the performance criteria in all runs.

4.5 METALS EMISSIONS

Metal sampling and emissions results are presented in Tables 4-9 through 4-11. The results indicate that the system met the applicable emission standards for volatile metals (mercury), semivolatile metals (the sum of lead and cadmium emissions), and low volatility metals (the sum of arsenic, beryllium, and chromium emissions).

Further, data from the test were used to develop a system removal efficiency (SRE) for the low volatility metal group. These values are used along with the feed rates of spiked low volatility metal during the test to develop an extrapolated low volatility metals feed rate limit in accordance with 40 CFR 63.1209(n)(2)(ii) and the approved PDT Plan. The actual feed rate of mercury and semivolatile metals demonstrated during the test were used to establish feed rate limits for these metals, without extrapolation. Detailed information regarding the establishment of metals feed rate limits and other process operating limits is presented in Section 6.0 of the report.

4.6 STACK GAS OXYGEN, CARBON MONOXIDE, AND TOTAL HYDROCARBONS

Siemens Water Technologies Corp.'s CEM system was used to monitor the stack gas O₂, and CO concentrations during the PDT. A temporary CEM was operated by Airtech during the PDT for THC measurements. These CEM readings were used to demonstrate regulatory compliance and to make corrections to specific stack gas concentration values that are reported on a 7% O₂ corrected basis. Both the carbon monoxide and total hydrocarbon concentrations met the regulatory requirements in all test runs as indicated in Table 4-1. The CEM data are summarized with the process operating data in Tables 3-1 through 3-3, and in Appendix A. In addition, Airtech used CEM oxygen and carbon dioxide data to determine the stack gas molecular weight for use in emissions calculations. The oxygen and carbon dioxide data results are shown in the summary tables for each sampling train and are presented in Airtech's Stack Sampling Report in Appendix I.

Westates PDT Report Rev 0.doc

5.0 QUALITY ASSURANCE/QUALITY CONTROL RESULTS

The PDT QAPP specifies procedures to be followed to assure the quality of data generated from the test program. Target data quality objectives (DQOs) and specific QA/QC procedures are presented in the QAPP for the following:

- Sample collection
- Sample analysis
- Process instrument calibration
- Stack sampling equipment calibration
- Laboratory analytical instrument calibration.

This section presents an overview of the QA/QC activities implemented during the PDT to ensure and assess the quality of the data gathered. This section also presents the QA/QC results for the PDT, and an assessment of the quality of the data gathered.

5.1 QA/QC ACTIVITIES AND IMPLEMENTATION

Siemens Water Technologies Corp. personnel were involved in all phases of project planning including the development of Data Quality Objectives (DQOs), the selection of sampling and analysis methods, the selection of contractors, and the development and review of project controlling documents. Primary references for the selection of methods and setting DQOs included:

- USEPA SW-846, Test Methods for Evaluating Solid Waste
- 40 CFR 266 Appendix IX and the Appendix to 40 CRF 63, Subpart EEE, Performance Specifications for Continuous Emission Monitoring Systems
- USEPA QAMS-005/80, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans
- EPA/625/6-89/023, Quality Assurance/Quality Control (QA/QC) Procedures for Hazardous Waste Incineration
- EPA/600/4-77-027b, Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods
- 40 CFR 60 Appendix A, Test Methods and Procedures, New Source Performance Standards
- 40 CFR 61 Appendix B, Test Methods.

Westates PDT Report Rev 0.doc

5.1.1 QA Surveillance

Part of the overall program QA/QC is the coordination of process operations and sampling activities during the test. This coordination effort is intended to identify potential operating upsets or sampling problems in the field, and to institute corrective actions as required. These field actions include holding, stopping, and/or repeating test runs as needed to ensure the collection of adequate and representative data. A log is kept by the PDT Manager to document performance test activities and noteworthy occurrences that may be beneficial to the reconstruction of events or to the evaluation of PDT results. Appendix B contains a copy of the PDT Manager's manual log.

During the PDT, there were no process-related interruptions to sampling activities. There were two interruptions in sampling which occurred due to other causes.

During Run 2 as the Method 0023A sampling train was being moved to the last traverse point in the first half of the run, the glass probe liner broke. The sampling team and regulatory observers noticed the break immediately when it occurred, and the sampling team shut down the sample pump. Since it was known when the break occurred and sampling was immediately stopped, it was decided to recover both parts of the broken probe liner, replace the probe, and continue sampling. All parties were aware of the situation and approved of the action taken.

During Run 3, a problem developed with the organic surrogate mixture spiking system. All sampling was placed on hold while the problem was corrected. All process operations and other spiking activities continued without interruption. Once the organic surrogate mixture spiking system was returned to service, all sampling was resumed, and the run finished without further interruption.

No negative impact on sampling or analysis occurred as a result of these interruptions, nor were there any other occurrences noted that would impact the PDT results or conclusions.

Several items were identified throughout the course of the PDT program (including preliminary testing conducted by Siemens Water Technologies Corp. in preparation for the formal PDT) which could either be classified as noncomformances with the test methods or specifications of the project controlling documents, or as potential areas for improvement. Where modifications to the protocols or field activities were necessary, they were implemented through field directives and/or the issuance of a Corrective Action Request (CAR). Copies of each CAR are included in Appendix C. The sections below discuss the PDT activities and include a description of any QA/QC observations, procedural modifications, or CARs issued.

Westates PDT Report Rev 0.doc

5.1.2 Sample Collection

Feed, effluent, and stack gas samples were collected and analyzed as part of the PDT program. Sampling QA/QC objectives are considered to be met if sampling activities follow the standard methods described in the PDT Plan and QAPP. During this test, sampling activities followed the prescribed procedures of the PDT Plan and QAPP, with the following exceptions:

- Based on observations made during preliminary testing, it was believed that the high stack gas moisture content and low particulate matter concentration would not be conducive to the use of a Cascade Impactor, which was originally planned for collection of particle size distribution data. Therefore, a Method 5 train, employing a smooth filter media was used to collect particulate matter samples, followed by scanning electron microscope examination of the particles to determine the particle size distribution. This is documented as CAR-003.
- 2. Prior to the test, the analytical laboratory expressed concern that analytical surrogate compounds placed onto the adsorbent resin in some of the sampling trains might be stripped off unless sampling is conducted at very low sampling rates. In order to address this concern, all semivolatile organic sampling trains were operated for a nominal sampling run time of 4 hours instead of the planned nominal sampling time of three hours. The same nominal volume of sample was collected over the four hour period that would have been collected in three hours. This represents a very conservative approach to the issue, and is documented as CAR-004.
- 3. During Run 2 of the PDT, the glass probe liner on the M0023A train was broken due to high winds swinging the sampling train as it was being moved from one traverse point to another. The stack sampling crew and regulatory observers noted the break and immediately stopped sampling. Upon investigation, it was found that both pieces of the broken probe liner could be retrieved and that the sampling train leak-checked from the break through the remainder of the train. All parties agreed that there was no impact on sample integrity, so the broken probe liner pieces were caped, taken to the recovery area and rinsed. The probe liner was replaced and the train was used to complete the sampling run. The rinse of the broken probe liner pieces was combined with the final train rinse to capture the entire sample. This is documented as CAR-007.
- 4. Makeup water samples were collected at the beginning of each run rather than being collected only once at the beginning of the test program. This change was made based on plant personnel's recommendations and concerns that the makeup water quality could potentially change over time. This modification is viewed as an improvement to the original test protocol.
- 5. In order to keep any water droplets and particulate matter from entering the M0040 sampling train, a glass wool plug was inserted into the sample probe. This was not described in the test plan, but was deemed to be a good operating practice for this train.
- 6. At the end of Run 1, the Test Manager noticed that the silica gel in the M0061 train was quite wet. The sampling team was directed to add an additional silica gel impinger to the M0061 train to prevent this situation from occurring again. A check of the moisture determination from the M0061 train used in Run 1 was compared to the moisture determinations from the other Run 1 trains, and found to be consistent. Thus there was no adverse impact on the Run 1 M0061 sample.

Westates PDT Report Rev 0.doc

7. EPA requested that split samples of the process feed materials and effluents be provided. Additional sample volume was collected accordingly, and samples were split with EPA.

Prior to the CPT, a database of all expected field samples was developed and cross-referenced with the analyses planned for each sample. A master list of samples generated from the database was used as a field QC checklist to help ensure that all samples were collected and shipped to the laboratory. Sample collection activities were recorded on log sheets, samples were labeled, packaged, and shipped to the analytical laboratory using traceability procedures described in the QAPP. Included with the samples were request-for-analysis forms specifying the required analyses for each sample. Copies of the process sample collection logs are included in Appendix D. Copies of the chain-of-custody records, and an index of sample numbers and identifications are included in the analytical data packages. Stack gas sample collection sheets are included with the full stack sampling report in Appendix I of this report. A review of the sample collection log sheets indicates that samples were collected as required, all applicable data were recorded, and sampling equipment conditions and operating parameters (particularly applicable to stack sampling activities) were within the requirements of the applicable methods.

5.1.3 Sample Analysis

Analytical data quality was determined through the analysis of blanks, duplicates, spiked samples, and reference materials, as prescribed by the QAPP. In large measure, the analytical data quality objectives for the PDT program were met. Section 5.2, below, and the data validation report in Appendix H, present more detailed results for each analytical data quality determination. Other observations and notes regarding sample analysis are provided in the next several paragraphs.

- The selected laboratory for the performance test has a slightly different target analyte list compared to those presented in the original test plan. Revised target analyte lists were presented to EPA and were approved for use in the test. This is documented as CAR-001.
- 2. Several analytical results for the POHCs in the stack gas were above the upper calibration range of the analytical instrument. Since these analyses totally consume the sample, there was no opportunity to conduct a dilution and reanalyze the samples. The laboratory therefore reported estimated values. When this situation came to the attention of the PDT Manager and QA Manager, the laboratory was asked if anything could be done to qualify these estimates to ensure that they were valid. The laboratory set up an extended calibration curve for the affected compounds and requantified the samples as discussed in the case narrative of the VOST analytical data package. The requantified results were all less than the original reported results, therefore the original results are considered to be biased high. In order to be conservative in the use of these data, the original high emission values were used for calculating Destruction and Removal Efficiency, thus resulting in a conservatively low DRE.

Westates PDT Report Rev 0.doc

5.1.4 Operations and Process Instrumentation

Process monitoring systems were calibrated prior to the PDT. Calibration data is presented in Appendix L. All process instrumentation met the performance criteria, and were deemed to produce reliable data, with one exception. While the stack gas flow rate monitoring system showed acceptable calibration results prior to the test, it was noted during the course of the PDT, that Siemens Water Technologies Corp.'s installed stack gas flow rate monitor was not corresponding with the Pitot tube readings of the stack sampling team. Further investigation indicated that some type of fault in the stack gas flow rate monitor was being experienced, however it was not able to be corrected during the course of the PDT. All parties were informed of the situation, and a decision was made to complete the PDT and to use the average of the stack gas sampling train flow rate determinations from each run to set the maximum stack gas flow rate operating limit for the system. Siemens Water Technologies Corp. will need to correct the fault in the stack gas flow rate monitoring system in order to demonstrate continuing compliance with the operating limit.

A CEMS Performance Specification Test was conducted prior to the PDT, and the emissions monitors met the applicable performance requirements. A CEMS Performance Specification Test Report is presented in Appendix K. Daily calibration of stack gas continuous emissions monitoring systems was conducted during the PDT. Each monitor met the calibration criteria during each day of testing.

The original test plan calls for an organic surrogate mixture to be added to the spent activated carbon feed. That mixture was specified to contain 1,1,1-Trichloroethane, however the compound is not available because it is an ozone depleting substance. Methylene chloride was substituted for 1,1,1-trichloroethane. This is documented as CAR-002.

Several modifications to the target operating conditions and anticipated permit limits were made after approval of the Performance Demonstration Test Plan. Most of these changes were made as a result of preliminary testing. Additionally, EPA included with their test plan approval letter a table of information and process data that they wanted included in the test report. Revised operating condition targets and the list of data requested by EPA are documented as CAR-006.

In order to maximize the stack gas flow rate (minimize the gas residence time) for the performance test, a source of additional air was needed beyond what is normally supplied by the combustion air fan. The access door on Hearth #1 was opened to allow additional air to be drawn into the system and to pass through the combustion and air pollution control portions of the system. This is documented as CAR-008.

Westates PDT Report Rev 0.doc

5.1.5 Stack Sampling Equipment

All stack sampling equipment was calibrated according to the protocols given in the applicable sampling methods. Each sampling system passed the calibration criteria. Stack sampling equipment calibration records are included in the Stack Sampling Report in Appendix I, of this report.

5.1.6 Laboratory Analytical Instrumentation

QA/QC procedures, as specified by the analytical methods and summarized in the PDT Plan and QAPP, were conducted and documented during the test. Analytical instrument calibration records and all raw analytical data are presented in the analytical data packages, submitted as separate volumes. No calibration problems were identified by the laboratories.

5.2 AUDITS AND DATA VALIDATION

The following audits were provided for in the QAPP:

- Field audits
- Performance Evaluations
- Office Audits
- Laboratory Audits.

A field audit was used to ensure that work was performed in accordance with the various project controlling documents and associated standard operating procedures. This audit was conducted throughout the test by the PDT Manager through observation of process operations and sample collection. It is the opinion of the PDT Manager, based on field observations, that all work was performed in substantial compliance with the specifications contained in the PDT Plan and QAPP.

VOST audit samples (spiked Tenax resin) were provided by the regulatory agencies. An initial set of VOST audit tubes were received from EPA's contract laboratory and were analyzed with the samples from the PDT. These initial audit samples, however were received without proper documentation and preservation, and were thus deemed to be of suspect validity. EPA was informed of the issue and another set of VOST audit tubes were received from EPA's contract laboratory (this time with proper documentation and preservation). These audit samples were submitted to the laboratory for analysis, but the timing was such that they were not analyzed with the actual PDT samples. Results for all of the audit sample received are presented in Table 5-1. The test team participants do not know the true value of the audit samples, so the analytical results are reported here for review by the regulatory agencies.

Westates PDT Report Rev 0.doc

The preparation of this report was conducted under the office QA/QC program in place at Focus. All records, correspondence, calculations, data, and reports are maintained in designated files for future reference. Reports, numerical tabulations, drawings, and calculations are checked for completeness and technical correctness, and documented prior to release in final form to the client.

Laboratory audits were provided for in the PDT Plan and the QAPP as an option to be exercised, if necessary, during the test program. No situations arose through the course of the test program which suggested the need for a laboratory audit.

Data validation consisted of a thorough check of all calculations involved in reducing sampling and analysis data. Subsequently, the data were compared to expected values and were investigated for consistency within and between test runs. For example, comparisons were made of stack gas flow rates, process operating temperatures, and sampling equipment operating conditions. Analytical data were reviewed to identify variations between duplicate measurements of the same parameter, either from multiple analyses of the same sample or from analyses between replicate test runs. Finally, QA/QC results were compared to the target data quality objectives defined in the QAPP and in the laboratory standard operating procedures (SOPs). During the project, 12,491 analytical data quality indicators were evaluated. Over 93 percent of the data quality objectives were completed and met. The data compare well within and between runs, and the measurements agree well with the expected values. The data are technically sound and are usable for their intended purpose. A data validation report is presented in Appendix H.

5.3 CALCULATIONS

Where applicable, the RF-2 system's performance and/or emissions were calculated using formulas presented in appropriate regulations. Other calculations followed generally accepted practice for thermal treatment process operations and performance test reporting. Many calculations were made using spreadsheets specifically designed by Focus for performance test data reduction and reporting, while other calculations were made by hand. Appendix G documents how all calculations were made for performance determination during this test program.

Westates PDT Report Rev 0.doc

5.4 CONCLUSIONS

Overall, the PDT was executed in substantial conformance to the requirements and specifications of the project controlling documents. Any anomalies observed have been documented and corrective actions have been implemented as necessary. The impact of these anomalies has been thoroughly reviewed and assessed. In the judgment of the PDT Manager, those anomalies do not have a discernible negative impact on data quality or the utility of the data gathered to serve their intended purpose as defined in the PDT Plan and QAPP.

Westates PDT Report Rev 0.doc

6.0 OPERATING PARAMETER LIMITS

The Siemens Water Technologies Corp. Carbon Reactivation Furnace RF-2 system demonstrated compliance with all applicable regulatory requirements during the PDT program. Operating parameter limits and associated automatic waste feed cutoff setpoints (as applicable) will be established as described in the approved PDT Plan and in the appropriate regulations of 40 CFR 63 Subpart EEE. Most operating parameter limits are based on demonstrations made during the PDT. For some parameters, such as maximum stack gas CO concentration, and minimum packed bed scrubber pressure differential, either regulation, guidance, or equipment manufacturer's recommendations (rather than the PDT demonstrated values) are used as the basis for the limit.

6.1 DEVELOPMENT OF OPERATING LIMITS

Limits on a number of operational control parameters must be maintained as an indication that the RF-2 system continues to operate in compliance with the applicable emission standards. Table 6-1 summarizes the discussion of the operational parameter limits for the RF-2 unit. To facilitate review, the operating parameters are grouped into the following categories:

- Group A1 parameters are continuously monitored and recorded, and are interlocked
 with the automatic waste feed cutoff system. Group A1 parameter limits are
 established from test operating data, and are used to ensure that system operating
 conditions are equal to or are more rigorous than those demonstrated during the test.
- Group A2 parameters are continuously monitored and recorded, and are interlocked with the automatic waste feed cutoff system. Group A2 parameter limits are established based on regulatory requirements rather than on the test operating conditions, e.g., the maximum stack CO concentration.
- Group B parameters are continuously monitored and recorded, but are not required
 to be interlocked with the automatic waste feed cutoff system. Operating records are
 required to ensure that established limits for these parameters are not exceeded.
 The Group B parameter limits are established based on the operation of the system
 during the test.
- Group C parameters are continuously monitored and recorded, but are not required
 to be interlocked with the automatic waste feed cutoff system. Group C parameter
 limits are based on manufacturer's recommendations, operational safety, and good
 operating practice considerations rather than on the test operating conditions, e.g.,
 the minimum packed bed scrubber pressure differential.

Westates PDT Report Rev 0.doc

6.2 SPECIFIC OPERATING PARAMETERS

Operating parameter limits for each of the control parameters have been established as specified in the HWC MACT regulations given in 40 CFR 63.1209 and the approved PDT plan. The following sections describe how each operating parameter limit has been established.

In addition to establishing specific operating limits, Siemens Water Technologies Corp. anticipates having limits on the types of waste that can be treated in RF-2. Since Siemens Water Technologies Corp. has demonstrated greater than 99.99% DRE during the PDT while treating chlorobenzene, a Class 1 (most thermally stable) compound, it is expected that Siemens Water Technologies Corp. will be permitted to treat all of the materials represented by the waste codes in the facility's most recent RCRA Part A permit application. Specific prohibitions are anticipated in the site's permit, for feed materials containing greater than 50 ppm of PCBs and those listed with the waste codes F020, F021, F022, F023, F026 or F027.

6.2.1 Parameters Demonstrated During the Test (Group A1 Limits)

Group A1 parameter limits are based on the results of the testing. The following operating parameters will be established as Group A1 parameters for the RF-2 system.

6.2.1.1 Maximum Spent Carbon Feed Rate

The PDT was conducted in order to demonstrate the maximum feed rate of spent carbon. The spent carbon feed rate is monitored on a continuous basis. The maximum allowable spent carbon feed rate has been established as a block hour average limit from the average of feed rates demonstrated during each of the three runs of the PDT.

6.2.1.2 Minimum Afterburner Temperature

The PDT was conducted at the minimum afterburner temperature with maximized combustion gas flow rate (minimum residence time), since these are the conditions least favorable for DRE. Organic emissions were also measured under these conditions for risk assessment purposes. Based on successful demonstration of DRE during the PDT, the minimum temperature limit has been established as an hourly rolling average equal to the average of the demonstrated test run average values.

6.2.1.3 Minimum and Maximum Hearth #5 Temperature

As part of EPA's approval of the PDT Plan, Siemens Water Technologies Corp. was required to establish both a minimum and maximum temperature limit for Hearth #5 of the reactivation furnace. Since both a minimum and maximum temperature could not be demonstrated in the single test condition approved for

the test, Siemens Water Technologies Corp. operated Hearth #5 at a maximum temperature during the PDT and will conduct a separate minimum temperature test outside of the formal PDT period.

The maximum Hearth #5 temperature limit has been established as an hourly rolling average equal to the average of the demonstrated test run averages.

6.2.1.4 Minimum Venturi Scrubber Differential Pressure

The performance test was conducted to demonstrate the minimum venturi scrubber differential pressure. Venturi scrubber differential pressure is monitored on a continuous basis. Based on successful demonstration of particulate and metals control during the performance test, the minimum venturi scrubber differential pressure limit has been established as the average of the hourly rolling average values demonstrated during each run of the performance test. The permit limit is also expected to be an hourly rolling average value.

6.2.1.5 Minimum Quench/Venturi Scrubber Recycle Liquid Flow Rate

The performance test was conducted to demonstrate the minimum quench/venturi scrubber recycle flow and maximum stack gas flow, thus establishing a *de facto* minimum liquid to gas ratio. Quench/Venturi scrubber flow and stack gas flow are both monitored on a continuous basis. Based on successful demonstration during the performance test, the minimum quench/venturi scrubber recycle liquid flow rate limit has been established based on the average of the hourly rolling average values demonstrated during each run of the performance test. This limit will be established as an hourly rolling average.

6.2.1.6 Minimum Packed Bed Scrubber pH

The performance test was conducted to demonstrate the minimum packed bed scrubber pH at maximum total chlorine/chloride feed rate. Scrubber pH is monitored on a continuous basis. Based on successful demonstration of HCl and Cl₂ control during the performance test, the minimum packed bed scrubber pH limit has been established as the average of the hourly rolling average pH values demonstrated during each run of the performance test. The permit limit will be administered as an hourly rolling average.

6.2.1.7 Minimum Packed Bed Scrubber Recycle Liquid Flow Rate

The performance test was conducted to demonstrate the minimum packed bed scrubber recycle flow rate and maximum stack gas flow, thus establishing a *de facto* minimum liquid to gas ratio. Packed bed scrubber recycle flow and stack gas flow are both monitored on a continuous basis. Based on successful demonstration of HCl and Cl₂ control during the performance test, the minimum packed bed scrubber recycle liquid flow rate limit has been established as the average of the hourly rolling average values demonstrated during each run of the performance test. This limit will also be administered on an hourly rolling average basis.

Westates PDT Report Rev 0.doc

6.2.1.8 Minimum Scrubber Blowdown Flow Rate

The performance test demonstrated a minimum scrubber blowdown flow rate, in order to demonstrate worst case conditions for solids buildup in the scrubbing system. In order to conserve water, Siemens Water Technologies Corp. recycles most of the liquid from the air pollution control system. However, in order to prevent the buildup of dissolved solids in the recycled water, a certain amount of the water must be purged (or blown down) from the system. As water is purged from the system, fresh makeup water is added. The minimum scrubber blowdown flow rate limit has been based on the average of the hourly rolling average values demonstrated during each run of the performance test. This limit will be administered as an hourly rolling average.

6.2.1.9 Minimum WESP Secondary Voltage

Although the HWC MACT regulations do not require any indicator of performance in an electrically enhanced emissions control device, Siemens Water Technologies Corp. believes that it is appropriate to establish a performance indicator. Accordingly, WESP secondary voltage (expressed as KVDC) is used as the indicator of continuing WESP performance. The minimum value has been established as the average of the minimum hourly rolling average secondary voltage values demonstrated during each run of the performance test. The secondary voltage limit will be based on an hourly rolling average.

6.2.1.10 Maximum Combustion Gas Velocity (Stack Gas Flow Rate)

The stack gas flow rate (expressed as actual cubic feet per minute) is used as the indicator of combustion gas velocity. The maximum stack gas flow rate was planned to be established from the mean of the maximum hourly rolling average stack gas flow rates measured by Siemens Water Technologies Corp.'s stack gas flow rate monitor during each run of the performance test. As stated in earlier sections of this report, the stack gas flow rate monitor experienced difficulties during the PDT such that the measurements were not reliable. Each isokinetic sampling system used for stack gas emissions measurements during the PDT also included the measurement of stack gas flow rate. Thus, the average stack gas flow rate determinations for each run, derived from the stack gas sampling systems, has been used to establish a maximum stack gas flow rate limit. The maximum stack gas flow rate limit will be administered as an hourly rolling average.

6.2.2 Group A2 Parameters

6.2.2.1 Maximum Stack Gas CO Concentration

The maximum hourly rolling average stack gas CO concentration was maintained at or below 100 ppmv corrected to 7% oxygen (dry basis) during the test. An operating parameter limit for maximum stack gas

carbon monoxide concentration of 100 ppmv hourly rolling average corrected to 7% oxygen will be established.

6.2.2.2 Fugitive Emissions Control

The HWC MACT regulations require controlling combustion system leaks. By design (no open feed systems), the combustion chamber constitutes a sealed system. There are no locations for combustion system leaks to occur. Therefore, the RF-2 system is in compliance with 40 CFR 63.1206(c)(5)(i)(A).

6.2.3 Group B Parameters

6.2.3.1 Maximum Total Chlorine/Chloride Feed Rate

During the PDT, Siemens Water Technologies Corp. maximized the feed rate of total chlorine/chloride through the spiking of tetrachloroethene and other chlorinated organic compounds. Since the HCl and Cl₂ emissions measured during the PDT were less than the applicable standard, the limit for total chlorine/chloride feed rate has been set as a 12-hour rolling average, equal to the average of the average total chlorine/chloride feed rate during the three runs of the PDT. Total chlorine/chloride includes the native chlorine/chloride in the spent activated carbon feed plus the spiked chlorine/chloride. Records of feed analyses, and the calculated 12-hour rolling average total chlorine/chloride feed rate values will be maintained to demonstrate compliance with the chlorine/chloride feed rate limit.

6.2.3.2 Maximum Mercury Feed Rate

Due to the low amounts of mercury expected in the spent activated carbon, Siemens Water Technologies Corp. has elected to comply with the mercury standard by calculating and complying with a 12-hour rolling average Maximum Theoretical Emission Concentration (MTEC), conservatively assuming no mercury removal across the APC system. The MTEC is complied with as a maximum mercury feed rate limit. This limit has been calculated from the performance test data by using the stack gas flow rate and oxygen concentration, and the maximum allowable stack gas mercury concentration based on the HWC MACT regulations. The feed rate limit is determined assuming that all mercury is emitted, and is complied with as a maximum 12-hour rolling average mercury feed rate limit.

6.2.3.3 Maximum Semivolatile Metals Feed Rate

Siemens Water Technologies Corp. demonstrated compliance with the semivolatile metal emission standard while spiking lead during the test. Therefore, the permitted feed rate limit for semivolatile metals (total cadmium plus lead) has been set as a 12-hour rolling average value equal to the average semivolatile metal feed rate demonstrated during the three runs of the PDT. Records of feed analyses, and the calculated 12-hour rolling average semivolatile metal feed rate values will be maintained to demonstrate compliance with the semivolatile metal feed rate limit.

Westates PDT Report Rev 0.doc

6.2.3.4 Maximum Low Volatility Metals Feed Rate

Siemens Water Technologies Corp. demonstrated compliance with the low volatility metal emission standard while spiking chromium during the test. The emissions measured during the test were significantly lower than the allowable limit. Therefore, the permitted feed rate limit for low volatility metals (total arsenic, plus beryllium, plus chromium) will be set as a 12-hour rolling average extrapolated upward to the HWC MACT standard based on the average low volatility metal feed rate and the average low volatility metal System removal Efficiency (SRE) during the three runs of the CPT. Extrapolation has been conducted as described in the approved PDT Plan. Records of feed analyses, and the calculated 12-hour rolling average low volatility metal feed rate values will be maintained to demonstrate compliance with the low volatility metal feed rate limit.

6.2.4 Group C3 Parameters

Group C parameter limits are based on manufacturer's recommendations, operational safety and good operating practice considerations. The following parameters are proposed as Group C parameters.

6.2.4.1 Minimum Packed bed Scrubber Pressure Differential

The minimum packed bed scrubber pressure differential is based on past operating experience. This limit has been established as an hourly rolling average limit.

6.3 EXTRAPOLATION OF METALS FEED RATE LIMITS

Siemens Water Technologies Corp. spiked lead and chromium into RF-2 during the PDT. Lead and chromium are representative of the semivolatile and low volatility metal groups, respectively. Since the lead emissions were very close to the applicable standard during the PDT, Siemens Water Technologies Corp. has established the maximum semivolatile metal feed rate as the average feed rate that was demonstrated during the three runs of the PDT. The emissions of low volatility metals however, were substantially below the standard during the PDT, thus Siemens Water Technologies Corp. has extrapolated the test results upward to establish a low volatility metals feed rate limit. PDT data has been used to calculate a system removal efficiency (SRE) for chromium, which can then be applied to the LVM metal volatility group. System removal efficiency is shown in Table 6-2, and was calculated using the following equation:

$$SRE_i = \left[1 - \frac{\dot{m}_{i,out}}{\dot{m}_{i,in}}\right] \times 100\%$$

Westates PDT Report Rev 0.doc

Performance Demonstration Test Report Siemens Water Technologies Corp. Carbon Reactivation Furnace RF-2 Page 38 of 119

where:

 $\dot{m}_{i.in}$ = mass feed rate of metal i.

 $\dot{m}_{i,out}$ = mass emission rate of metal i.

 SRE_i = demonstrated system removal efficiency of metal i.

The demonstrated system removal efficiency for chromium can be used to establish a mass feed rate limit for low volatility metals using the following equation:

$$\dot{m}_{g,in,\text{max}} = \frac{\dot{m}_{g,out,MACT}}{\left(1 - \frac{SRE_i}{100}\right)}$$

where:

 $\dot{m}_{\mathrm{g,in,max}}$ = maximum allowable mass feed rate of metal group g

 $\dot{m}_{g,out,MACT}$ = maximum allowable mass emission rate of metal group g based on the MTEC analysis

 SRE_i = demonstrated system removal efficiency of metal i designated to be the metal representative of metal group g.

Westates PDT Report Rev 0.doc

7.0 EMISSIONS DATA TO SUPPORT THE SITE SPECIFIC RISK ASSESSMENT

Siemens Water Technologies Corp. collected emissions data to support the site specific risk assessment under "worst-case" conditions rather than conducting a separate "risk burn" under less aggressive "typical" conditions. Siemens Water Technologies Corp. therefore believes that the emissions presented represent conservative values which are higher than during typical operation. The following section presents the emission data and discusses interpretation of the data where appropriate.

7.1 DETECTION LIMITS

Method detection limits (MDLs) were determined for each of the stack gas analyses conducted. MDLs were determined statistically for non-isotope dilution methods following the requirements of 40 CFR Part 136, Appendix B. MDLs for isotope dilution methods were determined following the promulgated method requirements. Isotope dilution method MDLs were calculated based on 2.5 times the background noise. All reported MDLs, including condensate analyses, are matrix specific and reflect any dilutions, splits, or concentrations applied during the extraction or analysis of the samples. As such, laboratory-supplied MDL's for these stack gas analyses appear to meet the definition of sample quantitation limit (SQL) referenced in several sources of risk assessment guidance.

7.2 METALS

EPA Method 29 was used to sample stack gas multiple-metals emissions during the PDT. Metals emission data were collected in addition to the metals feed rate data, and are presented with the compliance data in Section 4.0. Emission results for the multiple-metals trains are repeated here in Tables 7-1 through 7-3. Mercury speciation data for the risk assessment are presented in Table 7-4.

A separate SW-846 Method 0061 sampling train was operated during each run of the PDT to determine the emission of hexavalent chromium. Sampling conditions and emission results for hexavalent chromium are presented in Tables 7-5 through 7-7.

7.3 HYDROGEN CHLORIDE AND CHLORINE

HCl and Cl₂ emissions were determined using EPA Method 26A during the PDT and are presented with the compliance results in Section 4.0. They are repeated here in Tables 7-8 through 7-10.

7.4 PARTICLE SIZE DISTRIBUTION

Particle size distribution data were collected using EPA Method 5 followed by scanning electron microscope evaluation of the particles collected on the filters. Particle size distribution results are presented in Table 7-11.

7.5 SPECIATED VOLATILE ORGANICS

Stack gas volatile organic samples were collected using SW-846 Method 0030, and analyzed for a list of target analytes, as specified in the PDT Plan, as well as for tentatively identified compounds (TICs). Sampling conditions and results are presented in Tables 7-12 through 7-14.

7.6 SPECIATED SEMIVOLATILE ORGANICS

An SW-846 Method 0010 sampling train was used to sample the stack gases for a list of target semivolatile organics, as specified in the PDT Plan, as well as for tentatively identified compounds (TICs). The sampling conditions and results are summarized in Tables 7-15 through 7-17.

7.7 TOTAL VOLATILE ORGANICS, SEMIVOLATILE ORGANICS, AND NONVOLATILE ORGANICS

Determination of these emissions was conducted according to the procedures presented in EPA/600/R-96/036, and are reported in three fractions:

- 1 Total volatile organics, expressed as total mass of C₁ through C₇ n-alkanes (Tables 7-18 through 7-20).
- 2 Total chromatographable organics (TCO), representing compounds with a boiling point range of 100°C to 300°C (Tables 7-21 through 7-23).
- 3 Total nonvolatile organics (GRAV), representing compounds with a boiling point above 300°C (Tables 7-21 through 7-23).

7.8 DIOXINS AND FURANS

Stack gases were sampled using SW-846 Method 0023A for PCDD/PCDF emissions during each PDT run. Analyses were performed to identify the total mass of the tetra- through octa-chlorinated PCDD and

PCDF congeners, as well as the mass of each individual 2,3,7,8-substituted PCDD and PCDF congener. In order to evaluate the potential risk posed by emissions of a variety of PCDD/PCDF compounds, each 2,3,7,8-substituted isomer is assigned a "toxic equivalence factor" which is used to equate the toxicity of that compound to the toxicity of 2,3,7,8-TCDD. A summary of the sampling conditions and emission results is provided with the compliance results in Section 4.0, and are repeated here as Tables 7-24 through 7-26. Analytical results for each of the 2,3,7,8-substituted PCDD and PCDF isomers, and their corresponding emissions, expressed as 2,3,7,8-TCDD toxic equivalents are presented in Tables 7-27 through 7-29.

7.9 SPECIATED PAHS

Polyaromatic hydrocarbons were analyzed on the same sampling train used for speciated semivolatile organic compound determinations. Analyses for PAHs followed CARB Method 429. Sampling conditions and emission results are presented in Tables 7-30 through 7-32.

7.10 POLYCHLORINATED BIPHENYLS (PCBS)

PCBs were analyzed on the same sampling train used for speciated semivolatile organic compound determinations. Analyses for PCBs followed EPA Method 1668. Sampling conditions and emission results are presented in Tables 7-33 through 7-35.

7.11 ORGANOCHLORINE PESTICIDES

Organochlorine pesticide compounds were sampled using SW-846 Method 0010. Sampling conditions and emission results are presented in Tables 7-36 through 7-38.

Westates PDT Report Rev 0.doc

TABLES

Westates PDT Report Rev 0.doc

Revision: 0

Date: 06/30/06

Analytical Notation Legend

Notation	Meaning
В	Method blank contamination. The associated method blank contains the analyte at a reportable level.
С	Co-eluting isomer
COL	Greater than 40% RPD between primary and confirmatory column. Reported lower value.
Е	Estimated – Exceeds calibration range
J	Estimated result. Result is less than the reporting limit.
М	Result measured against nearest internal standard, assuming a response factor of 1.
N	Estimated. Tentatively identified compound.
NA	Not analyzed or Not applicable
ND or U	Not detected
Q	Estimated maximum possible concentration (EMPC)

Westates PDT Report Rev 0.doc

Revision: 0 Date: 06/30/06

Table 1-1. Regulatory Compliance Performance and Emissions Summary

Parameter	Units	Test Objective	Run 1	Run 2	Run 3	Test Average
DRE - Chlorobenzene	%	> 99.99	> 99.9914	> 99.9970	99.9940	> 99.9941
DRE - Tetrachloroethene	%	> 99.99	> 99.9951	> 99.9982	> 99.9976	> 99.9970
Stack gas filterable particulate matter	mg/dscm	< 34	21	10	18	16
concentration (b)	(gr/dscf)	< 0.015	0.0090	0.0046	0.0079	0.0072
Stack gas PCDD/PCDF (b)	ng TEQ/dscm	< 0.40	0.065	0.052	0.062	0.060
Stack gas mercury (b)	ug/dscm	< 130	< 6.1	< 5.8	< 7.5	< 6.5
Stack gas semivolatile metals (Cd + Pb) concentration (b)	ug/dscm	< 240	210	130	360	230
Stack gas low volatility metals (As + Be + Cr) concentration (b)	ug/dscm	< 97	< 35	< 12	< 21	< 23
Stack gas HCI/Cl ₂ (b)	ppmv as HCI	< 77	5.4	3.2	3.0	3.9
Stack gas carbon monoxide concentration (b)	ppmv	< 100	11.5	10.4	15.6	12.5
Stack gas total hydrocarbon concentration (b)	ppmv, as propane	< 10	< 0.6	< 0.6	< 0.6	< 0.6
Stack gas oxygen concentration	vol%, dry	NA	9.8	8.9	9.3	9.3

⁽a) Stack gas THC and O₂ data were obtained using Airtech's temporary CEMS.

Note: Compliance with regulatory standards is based on the arithmetic average of the three test runs, except for DRE, where each run must meet the specified criteria [see 40 CFR 63.1206(b)(12)(ii)]. All values are reported to two significant figures.

⁽b) Corrected to 7% oxygen, dry basis.

Table 1-2. Summary of Process Operating Conditions ^a

	DDT		Λ - 1		
	וטץ		Act	ual	
Units	Target	Run 1	Run 2	Run 3	Average
lb/hr	3000	3071	3022	3053	3049
lb/hr	75 – 80	59.5	62.0	58.6	60.0
lb/hr	3.0E-04	4.0E-05	4.2E-05	7.0E-05	5.1E-05
lb/hr	1.1E-01	1.0E-01	1.0E-01	1.0E-01	1.0E-01
lb/hr	3.9E-01	3.6E-01	3.8E-01	3.7E-01	3.7E-01
lb/hr	33 – 37	34.8	35.0	35.0	35.0
lb/hr	33 – 37	35.0	35.0	34.8	35.0
lb/hr	40 – 42	40.9	40.9	40.7	40.8
٥F	1650	1650	1650	1650	1650
٥F	1750	1763	1767	1751	1760
in w.c.	≥ 15	19.2	17.7	18.0	18.3
gpm	70 – 75	74.6	77.0	73.2	74.9
рН	≥ 4	4.82	4.62	3.68	4.37
gpm	≥ 60	63.6	63.1	62.9	63.2
gpm	60	59.8	57.2	56.9	58.0
kVDC	≥ 14	24.3	22.1	21.7	22.7
acfm	9,000	11,297	8,506	8,846	9,550
ppmv	≤ 100	11.5	10.4	15.6	12.5
ppmv	≤ 10	< 0.6	< 0.6	< 0.6	< 0.6
vol %	NA	10.1	9.2	9.4	9.6
	Ib/hr OF OF in w.c. gpm pH gpm gpm kVDC acfm ppmv	Ib/hr 3000 Ib/hr 75 - 80 Ib/hr 3.0E-04 Ib/hr 1.1E-01 Ib/hr 3.9E-01 Ib/hr 33 - 37 Ib/hr 40 - 42 °F 1650 °F 1750 in w.c. ≥ 15 gpm 70 - 75 pH ≥ 4 gpm 60 kVDC ≥ 14 acfm 9,000 ppmv ≤ 100 ppmv ≤ 10	Units Target Run 1 Ib/hr 3000 3071 Ib/hr 75 − 80 59.5 Ib/hr 3.0E-04 4.0E-05 Ib/hr 1.1E-01 1.0E-01 Ib/hr 3.9E-01 3.6E-01 Ib/hr 33 − 37 34.8 Ib/hr 40 − 42 40.9 $^{\circ}$ F 1650 1650 $^{\circ}$ F 1750 1763 in w.c. ≥ 15 19.2 gpm 70 − 75 74.6 pH ≥ 4 4.82 gpm ≥ 60 63.6 gpm 60 59.8 kVDC ≥ 14 24.3 acfm 9,000 11,297 ppmv ≤ 100 10.5 ppmv ≤ 100 < 0.6	Units Target Run 1 Run 2 Ib/hr 3000 3071 3022 Ib/hr 75 – 80 59.5 62.0 Ib/hr 3.0E-04 4.0E-05 4.2E-05 Ib/hr 1.1E-01 1.0E-01 1.0E-01 Ib/hr 3.9E-01 3.6E-01 3.8E-01 Ib/hr 33 – 37 34.8 35.0 Ib/hr 40 – 42 40.9 40.9 $^{\circ}$ F 1650 1650 1650 $^{\circ}$ F 1750 1763 1767 in w.c. ≥ 15 19.2 17.7 gpm 70 – 75 74.6 77.0 pH ≥ 4 4.82 4.62 gpm ≥ 60 63.6 63.1 gpm 60 59.8 57.2 kVDC ≥ 14 24.3 22.1 acfm 9,000 11,297 8,506 ppmv ≤ 100 11.5 10.4 ppmv ≤ 100 < 0.6	Units Target Run 1 Run 2 Run 3 Ib/hr 3000 3071 3022 3053 Ib/hr 75 - 80 59.5 62.0 58.6 Ib/hr 3.0E-04 4.0E-05 4.2E-05 7.0E-05 Ib/hr 1.1E-01 1.0E-01 1.0E-01 1.0E-01 Ib/hr 3.9E-01 3.6E-01 3.8E-01 3.7E-01 Ib/hr 33 - 37 34.8 35.0 35.0 Ib/hr 40 - 42 40.9 40.9 40.7 °F 1650 1650 1650 1650 Ib/hr 40 - 42 40.9 40.9 40.7 °F 1650 1650 1650 1650 Ib/hr 40 - 42 40.9 40.9 40.7 °F 1750 1763 1767 1751 in w.c. ≥ 15 19.2 17.7 18.0 gpm 70 - 75 74.6 77.0 73.2 gpm 6

Note: HRA = Hourly rolling average.

⁽a) All values are averages. All but constituent feed rates and stack gas flow rates are taken from control room instruments. Spiking rates have been added to spent activated carbon feed rates, since spiking occurred downstream of the spent activated carbon mass feed rate measurement system. Stack gas flow rates are the average from all isokinetic sampling trains from each run. Stack gas flow monitor was not working properly during the test.

⁽b) 60-minute rolling average, corrected to 7% O₂, dry basis.
(c) Corrected to 7% O₂, dry basis.

⁽d) Dry basis.

Table 2-1. Summary of Planned Sampling Locations, Equipment, and Methods

Location ^a	Sample Name (Number)	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
1	Spent Activated Carbon (1-Volatiles) (1-Semivolatiles) (1 - Metals) (1 - Properties) (1-Archive)	Conveyor	Teflon scoop 4L glass jug, 250 ml jar (VOA) 1L glass bottles with teflon lined lids	1 scoop per grab; 250 ml volatiles 1L semivolatiles 1L properties 1L metals 1L archive	Collect a grab sample at each 15-minute interval during each test run. Grab samples will be combined in a glass jug to build run composite. Collect four 1-lter samples and one 250 ml VOA jar of the homogenized composite at the end of the test run.	SW-846, Vol. II, Chapter 9, Section 9.3
2	Makeup water (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at the beginning of the test; Fill 4L bottle at beginning of test. Fill three 1-liter samples from the 4L bottle.	SW-846, Vol. II, Chapter 9, Section 9.2
3	Caustic (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at the beginning of the test; Fill 4L bottle at beginning of test. Fill three 1-liter samples from the 4L bottle.	SW-846, Vol. II, Chapter 9, Section 9.2
4	Scrubber Blowdown (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA ~200 ml per grab; 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at each 30 minute interval; Collect a ~200 ml grab sample at each 30-minute interval during each test run. Grab samples will be combined in a glass jug to build run composite. Collect three 1-liter samples of the homogenized composite at the end of the test run.	SW-846, Vol. II, Chapter 9, Section 9.2

Table 2-1. Summary of Planned Sampling Locations, Equipment, and Methods

Location ^a	Sample Name (Number)	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
5	POTW Discharge (2-Volatiles) (1-Semivolatiles) (1 – Metals) (1-Archive)	Тар	40 ml vials; 4L glass jug, 1L glass bottles with teflon lined lids	40 ml VOA ~200 ml per grab; 1L semivolatiles 1L metals 1L archive	Collect one pair of 40 ml VOA vials at each 30 minute interval; Collect a ~200 ml grab sample at each 30-minute interval during each test run. Grab samples will be combined in a glass jug to build run composite. Collect three 1-liter samples of the homogenized composite at the end of the test run.	SW-846, Vol. II, Chapter 9, Section 9.2
Stack (6)	Stack gas M29	Port	EPA Method 29 multiple metals sampling train	Minimum 120 minutes ^{c,d}	Collect integrated sample for metals and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5, and 29.
Stack (6)	Stack gas M0061	Port	SW-846 Method 0061 hexavalent chromium sampling train	Minimum 120 minutes ^{c,d}	Collect integrated samples for hexavalent chromium and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0061
Stack (6)	Stack gas M26A	Port	EPA Method 26A sampling train	Minimum 120 minutes ^{c,d}	Collect integrated sample for particulate, hydrogen chloride, and chlorine. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5, and 26A
Stack (6)	Stack gas M0010-SV	Port	SW-846 Method 0010 sampling train	Minimum 3 dry standard cubic meters ^{c,d}	Collect integrated sample for semivolatile organics, organochlorine pesticides, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0010.

Table 2-1. Summary of Planned Sampling Locations, Equipment, and Methods

Location ^a	Sample Name (Number)	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
Stack (6)	Stack gas M0010-P	Port	Combined SW-846 Method 0010, EPA CARB Method 429 sampling train	Minimum 3 dry standard cubic meters ^{c,d}	Collect integrated sample for PAHs, PCBs, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0010; CARB Method 429.
Stack (6)	Stack gas M0010-TOE	Port	SW-846 Method 0010 sampling train	Minimum 3 dry standard cubic meters ^{c,d}	Collect integrated samples for total semivolatile organics, total nonvolatile organics, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0010; EPA TOE Guidance
Stack (6)	Stack gas M0023A	Port	SW-846 Method 0023A sampling train	Minimum 3 hours and 2.5 dry standard cubic meters ^{c,d}	Collect integrated sample for PCDD/PCDFs, and moisture. Measure stack gas velocity, pressure, and temperature. Collect bag samples or use CEM for oxygen and carbon dioxide.	EPA Methods 1 through 5; SW846-0023A.
Stack (6)	Stack gas M0030	Port	SW-846 Method 0030 volatile organic sampling train	4 tube pairs per run; 40 minutes per tube pair. Up to 20 liters of stack gas per tube pair	Collect four pairs of sorbent tubes and stack gas condensate for volatile organcs during each run.	SW846-0030 (VOST)
Stack (6)	Stack gas M0040	Port	SW-846 Method 0040 sampling train	25 – 50 liters	Collect representative sample through a heated sample probe and filter; through a condenser and into a Tedlar bag. Transport dried sample and condensate to GC/FID.	EPA Methods 1 through 5; SW846-0040; EPA TOE Guidance.
Stack (6)	Stack gas PSD	Port	Cascade impactor	As required	Collect particle size distribution samples on multiple substrates	Cascade impactor mfgr. instructions
Stack (6)	Stack gas CEMS	Port	Temporary CEMS THC	Continuous	Continuously monitor stack gas for total hydrocarbons during each run	EPA Method 25A

Table 2-1. Summary of Planned Sampling Locations, Equipment, and Methods

Location ^a	Sample Name (Number)	Access	Equipment	Sample Size	General Procedure/Frequency	Reference Method ^b
Stack (7)	Stack gas CEMS	Port	Installed CEMS CO	Continuous	Continuously monitor stack gas carbon monoxide during each run.	40 CFR 63 Subpart EEE Appendix; PS 4B
Stack (7)	Stack gas CEMS	Port	Installed CEMS O ₂	Continuous	Continuously monitor stack gas oxygen during each run.	40 CFR 63 Subpart EEE Appendix; PS 4B

- a Refer to Figure 2-1.
- b "SW846" refers to <u>Test Methods for Evaluating Solid Waste</u>, Third Edition, November 1986, and Updates.
 - "EPA Method" refers to New Source Performance Standards, Test Methods and Procedures, Appendix A, 40 CFR 60.
 - "CARB" refers to California Air Resources Board Methods.
 - "PS 4B" refers to Performance Specification 4B, 40 CFR 60.
- c The exact volume of gas sampled will depend on the isokinetic sampling rate.
- d Isokinetic sampling trains include:
 - Collecting one set of bag samples (or using CEM) for oxygen and carbon dioxide analysis to determine stack gas molecular weight (EPA Method 3)
 - Performing stack gas velocity, pressure, and temperature profile measurement for each sampling location (EPA Method 2)
 - Determining the moisture content of the stack gas for each sampling train (EPA Method 4)

Table 2-2. Summary of Planned Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Spent Activated Carbon	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Chloride	1	3	SW846-5050	lon chromatography (SW846-9056)
	Total metals	1	3	Acid digestion (SW846-3050)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
	Elemental	1	3	NA	(ASTM D5373) with (ASTM D3176) as an alternate
Makeup Water	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
Caustic	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
Scrubber Blowdown	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)

Table 2-2. Summary of Planned Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
POTW Discharge	Volatile Organics	1	3	Purge & Trap (SW846-5035)	GC/MS (SW846-8260)
	Semivolatile Organics	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	Total metals	1	3	Acid digestion (SW846-3020)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
Stack gas M0030	VOCs + TICs (tenax + tenax/charcoal tubes) (Note 2)	(Note 3)	(Note 3)	Thermal desorption, trap (SW846-5041A)	GC/MS (SW846-8260)
	VOCs + TICs (condensate) (Note 2)	1	3	Purge and trap	GC/MS (SW846-8260)
Stack gas M0040	Total VOCs	1	3	Purge and trap for condensate Direct injection for gas	GC/FID (Guidance for Total Organics, App. A and E)
Stack gas M0010-SV (low res analysis)	Semivolatile Organics & TICs (Note 4)	1	3	Solvent extraction (SW846-3542)	GC/MS (SW846-8270)
	OCP (Note 5)	1	3	Solvent extraction (SW846-3542)	GC (SW-846-8081)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)

Table 2-2. Summary of Planned Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Stack gas M0010-P (high res analysis)	PCB (Note 7)	1	3	Solvent extraction (SW846-3542)	GC/MS (EPA Method 1668)
	PAH (Note 8)	1	3	Solvent extraction (CARB 429)	GC/MS (CARB 429)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M0010- TOE	Total SVOCs	1	3	Solvent extraction (SW846-3542)	TOC GC/FID (Guidance for Total Organics, Appendix C)
	Total NVOCs	1	3	Solvent extraction (SW846-3542)	Gravimetric Method (Guidance for Total Organics, Appendix D)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M0023A	PCDD/PDCF	1	3	Solvent extraction (SW846-3500)	GC/MS (SW-846 Method 8290)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)

Table 2-2. Summary of Planned Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Stack gas M29	Metals (Note 9)	1	3	Acid digestion (SW846-3050)	ICP (SW846-6020) & CVAAS (SW846-7470 for Hg)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M0061	Hexavalent chromium	1	3	NA	lon chromatography, post- column reactor (SW846-7199)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M26A	Hydrogen chloride/Chlorine	1	3	NA	Ion chromatography (SW846-9057)
	Particulate	1	1	NA	Gravimetric (EPA Method 5)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Velocity	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas M00023A	PCDD/PCDF	1	3	Solvent extraction (SW846-8290)	GC/MS (SW846-8290; & SW846-0023A)
	Moisture	1	3	NA	Gravimetric (EPA Method 4)
	Temperature	1	3	NA	Thermocouple (EPA Method 2)
	Flow rate	NA	NA	NA	Pitot tube (EPA Method 2)
	Oxygen, Carbon dioxide	(Note 6)	(Note 6)	NA	Orsat or CEM (EPA Method 3)
Stack gas PSD	Particle size distribution	NA	NA	NA	Cascade impactor manufacturer's instructions

Table 2-2. Summary of Planned Performance Test Analytical Procedures and Methods

Sample Name	Analysis	Samples per Run	Total Field Samples for Analysis	Preparation Method (See Note 1)	Analytical Method (See Note 1)
Stack gas temporary CEMS	Total hydrocarbons	(Note 10)	(Note 10)	NA	Extractive Analyzers, EPA Method 25A
Stack gas Installed CEMs	Carbon Monoxide	(Note 10)	(Note 10)	NA	Extractive Analyzers, 40CFR 63 Appendix
	Oxygen	(Note 10)	(Note 10)	NA	Extractive Gas Analyzers, 40 CFR 63 Appendix

- Note 1: "ASTM" refers to American Society for Testing and Materials, Annual Book of ASTM Standards, Annual Series.
 - "SW846" refers to Test Methods for Evaluating Solid Waste, Third Edition, November 1986, and updates.
 - "EPA Methods" (Methods 1 through 5 and 23) refer to New Source Performance Standards, Test Methods and Procedures,, App. A, 40CFR 60.
 - "CARB" refers to California Air Resources Board methodology adopted January 27, 1987.
 - "Guidance for Total Organics" refers to EPA/600/R-96/036, March, 1996.
- Note 2: Volatile Target Compounds as listed in this Test Plan, plus tentatively identified compounds.
- Note 3: During each sampling run, 4 pairs of VOST tubes (8 samples) will be collected, but only 3 pairs (6 samples) will be analyzed. The extra tube pair provides a contingency in case of breakage or other event that could require analysis of the extra tube pair. Analysis of each tube in each tube pair will be conducted separately.
- Note 4: Semivolatile Target Compounds as listed in this Test Plan, plus tentatively identified compounds.
- Note 5: Organochlorinated pesticide (OCP) target compounds as listed in this Test Plan.
- Note 6: One set of gas bag samples collected during each stack traverse for Orsat analysis, or CEM.
- Note 7: Polychlorinated Biphenyl (PCB) target compounds target compounds as listed in the Plan
- Note:8 Polycyclic Aromatic Hydrocarbon (PAH) target compounds as listed in this Plan
- Note 9: Metal Target Compounds as listed in this Test Plan.
- Note 10: Installed CEMs sampling and analysis is continuous during each run.

Table 3-1. Process Operating Data Summary - Run 1^a

Parameter	Units	No. of Readings	Mean	Minimum	Maximum	Std. Dev.
Spent carbon feed rate (1-min avg)	lb/hr	274	3071	0	3555	706
Hearth #5 temperature	٥F	274	1650	1649	1650	0.4
Afterburner temperature	٥F	274	1763	1762	1764	0.5
Venturi scrubber pressure differential	in w.c.	274	19.2	17.3	19.9	0.8
Quench/venturi scrubber total liquid flow rate	gpm	274	74.6	74.3	74.8	0.1
Packed bed scrubber pH	рН	274	4.82	4.42	5.22	0.2
Packed bed scrubber liquid flow rate	gpm	274	63.6	63.2	63.9	0.2
Wet scrubber bowdown flow rate	gpm	274	59.8	58.0	61.8	1.0
WESP secondary voltage	kVDC	274	24.3	24.2	24.5	0.1
Stack gas flow rate	acfm	274	8626	8182	8894	204
Stack gas carbon monoxide ^b	ppmv	274	11.5	9.8	12.7	0.8
Stack gas oxygen (1-min avg) ^c	vol %	274	10.1	9.0	11.1	0.4

a All values are taken from process instrument logs presented in Appendix A, and are 60-minure rolling averages, except as noted.

b $\,$ 60-minute rolling average, corrected to 7% O_2 , dry basis.

c Dry basis.

Table 3-2. Process Operating Data Summary - Run 2^a

Parameter	Units	No. of Readings	Mean	Minimum	Maximum	Std. Dev.
Spent carbon feed rate (1-min avg)	lb/hr	345	3022	47	3583	573
Hearth #5 temperature	٥F	345	1650	1648	1652	0.6
Afterburner temperature	٥F	345	1767	1765	1770	1.3
Venturi scrubber pressure differential	in w.c.	345	17.7	16.5	18.7	0.6
Quench/venturi scrubber total liquid flow rate	gpm	345	77.0	76.7	77.7	0.4
Packed bed scrubber pH	рН	345	4.62	4.23	4.98	0.2
Packed bed scrubber liquid flow rate	gpm	345	63.1	62.9	63.2	0.1
Wet scrubber bowdown flow rate	gpm	345	57.2	56.6	58.6	0.4
WESP secondary voltage	kVDC	345	22.1	21.8	22.3	0.1
Stack gas flow rate	acfm	345	7101	6935	7415	128
Stack gas carbon monoxide ^b	ppmv	345	10.4	8.3	12.9	1.3
Stack gas oxygen (1-min avg) ^c	vol %	345	9.2	8.6	10.7	0.4

a All values are taken from process instrument logs presented in Appendix A, and are 60-minure rolling averages, except as noted.

b $\,$ 60-minute rolling average, corrected to 7% O_2 , dry basis.

c Dry basis.

Table 3-3. Process Operating Data Summary - Run 3^a

Parameter	Units	No. of Readings	Mean	Minimum	Maximum	Std. Dev.
Spent carbon feed rate (1-min avg)	lb/hr	275	3053	109	4211	744
Hearth #5 temperature	٥F	275	1650	1648	1652	0.8
Afterburner temperature	٥F	275	1751	1750	1754	0.6
Venturi scrubber pressure differential	in w.c.	275	18.0	17.3	19.2	0.5
Quench/venturi scrubber total liquid flow rate	gpm	275	73.2	72.4	75.9	0.7
Packed bed scrubber pH	рН	275	3.68	3.46	4.16	0.2
Packed bed scrubber liquid flow rate	gpm	275	62.9	62.7	63.9	0.2
Wet scrubber bowdown flow rate	gpm	275	56.9	55.4	58.5	0.7
WESP secondary voltage	kVDC	275	21.7	21.3	22.8	0.4
Stack gas flow rate	acfm	275	7049	6832	7380	109
Stack gas carbon monoxide ^b	ppmv	275	15.6	12.0	19.5	1.7
Stack gas oxygen (1-min avg) ^c	vol %	275	9.4	7.6	10.9	0.6

a All values are taken from process instrument logs presented in Appendix A, and are 60-minure rolling averages, except as noted.

b $\,$ 60-minute rolling average, corrected to 7% O_2 , dry basis.

c Dry basis.

Table 3-4. Feed Material Physical/Chemical Characteristics

		5	Spent Activa	ated Carbo	n
Characteristics	Units	Run 1	Run 2	Run 3	Average
Carbon content	wt%	61.3	67.6	60.2	63.0
Hydrogen content ^a	wt%	4.1	2.9	3.9	3.6
Oxygen content ^a	wt%	33.9	28.8	35.2	32.6
Nitrogen content	wt%	< 0.5	< 0.5	< 0.5	< 0.5
Sulfur content	wt%	< 0.2	< 0.2	< 0.2	< 0.2

⁽a) Hydrogen and oxygen content includes moisture. Oxygen determined by difference. Oxygen could not be analyzed due to a matrix interferrence.

Table 3-5. Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs)

Stream Name		Feed Rate (lb/hr)							
	Run 1	Run 2	Run 3	Average					
Spent Activated Carbon	3071	3022	3053	3049					
Monochlorobenzene Spike	34.82	35.05	35.05	34.97					
Tetrachloroethene Spike	35.05	35.03	34.85	34.98					
Lead Spike	19.83	20.15	19.88	19.95					
Chrome Spike	19.83	20.15	19.88	19.95					
Organic Surrogate Mixture Spike	40.87	40.88	40.73	40.83					

Table 3-5. Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs), continued

	Analytical Result										
Properties/Constituents	Units		Spent Activated Carbon		1	Monochlorobenzene Spik	e		Tetrachloroethene Spike		
		Run 1	Run 2	Run 3	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3	
Chlorine/chloride	mg/kg	3860 J	4740 J	3650 J	315548	315548	315548	855199	855199	855199	
Metals											
Aluminum	mg/kg	4.33E+02	8.32E+02	7.85E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Antimony	mg/kg	6.00E+00 ND	6.00E+00 ND	6.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Arsenic	mg/kg	1.40E+00 B	1.40E+00 B	1.60E+00 B	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Barium	mg/kg	2.11E+01	3.50E+01	3.73E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Beryllium	mg/kg	2.20E-01 B	4.20E-01 B	5.40E-01 B	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Cadmium	mg/kg	1.60E-01 B	1.40E-01 B	2.40E-01 B	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Chromium	mg/kg	3.70E+00	5.90E+00	5.70E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Cobalt	mg/kg	1.60E+00 B	1.80E+00 B	2.00E+00 B	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Copper	mg/kg	1.11E+01	1.74E+01	1.24E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Lead	mg/kg	7.50E-01 B	8.80E-01 B	1.10E+00 B	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Manganese	mg/kg	2.78E+02	2.70E+02	1.79E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Mercury	mg/kg	1.30E-02 B	1.40E-02 B	2.30E-02 B	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Nickel	mg/kg	9.50E+00	5.08E+01	2.89E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Selenium	mg/kg	6.10E-01 B	5.50E-01 B	4.80E-01 B	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Silver	mg/kg	3.00E+00 ND	3.00E+00 ND	3.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Thallium	mg/kg	3.50E+00 ND	3.50E+00 ND	3.50E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Vanadium	mg/kg	2.70E+00	2.90E+00	6.20E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Zinc	mg/kg	1.44E+01 J	1.68E+01 J	1.68E+01 J	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
POHCs											
Monochlorobenzene	mg/kg	0	0	0	999976	999976	999976	0	0	0	
Tetrachloroethene	mg/kg	0	0	0	0	0	0	999740	999740	999740	

					Analytical Result						
Properties/Constituents	Units		Lead Spike			Chrome Spike		Organic Surrogate Mixture Spike			
		Run 1	Run 2	Run 3	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3	
Chlorine/chloride	mg/kg	0	0	0	0	0	0	162966	162966	162966	
Metals											
Aluminum	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Antimony	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Arsenic	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Barium	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Beryllium	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Cadmium	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Chromium	mg/kg	0.00E+00	0.00E+00	0.00E+00	1.75E+04	1.75E+04	1.75E+04	0.00E+00	0.00E+00	0.00E+00	
Cobalt	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Copper	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Lead	mg/kg	5.00E+03	5.00E+03	5.00E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Manganese	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Mercury	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Nickel	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Selenium	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Silver	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Thallium	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Vanadium	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Zinc	mg/kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
POHCs											
Monochlorobenzene	mg/kg	0	0	0	0	0	0	0	0	0	
Tetrachloroethene	mg/kg	0	0	0	0	0	0	0	0	0	

Table 3-5. Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs), continued

								Resultant	Feed Rates (lb.	/hrì					
	Т			Spent Activ	ate	d Carbon		Monochlorobenzene Spike				Tetrachloroethene Spike			
		Run 1		Run 2		Run 3	Average	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average
Chlorine/chloride		1.19E+01		1.43E+01		1.11E+01	1.24E+01	1.10E+01	1.11E+01	1.11E+01	1.10E+01	3.00E+01	3.00E+01	2.98E+01	2.99E+01
Metals															
Aluminum		1.33E+00		2.51E+00		2.40E+00	2.08E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Antimony	<	1.84E-02	<	1.81E-02	<	1.83E-02	1.83E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Arsenic		4.30E-03		4.23E-03		4.88E-03	4.47E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Barium		6.48E-02		1.06E-01		1.14E-01	9.48E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Beryllium		6.76E-04		1.27E-03		1.65E-03	1.20E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cadmium		4.91E-04		4.23E-04		7.33E-04	5.49E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Chromium		1.14E-02		1.78E-02		1.74E-02	1.55E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cobalt		4.91E-03		5.44E-03		6.11E-03	5.49E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Copper		3.41E-02		5.26E-02		3.79E-02	4.15E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Lead		2.30E-03		2.66E-03		3.36E-03	2.77E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Manganese		8.54E-01		8.16E-01		5.46E-01	7.39E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mercury		3.99E-05		4.23E-05		7.02E-05	5.08E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nickel		2.92E-02		1.54E-01		8.82E-02	9.03E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Selenium		1.87E-03		1.66E-03		1.47E-03	1.67E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Silver	<	9.21E-03	<	9.07E-03	<	9.16E-03	9.15E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Thallium	<	1.07E-02	<	1.06E-02	<	1.07E-02	1.07E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Vanadium		8.29E-03		8.76E-03		1.89E-02	1.20E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zinc		4.42E-02		5.08E-02		5.13E-02	4.88E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
POHCs	DHCs														
Monochlorobenzene		0.00E+00		0.00E+00		0.00E+00	0.00E+00	3.48E+01	3.50E+01	3.50E+01	3.50E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Tetrachloroethene		0.00E+00		0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.50E+01	3.50E+01	3.48E+01	3.50E+01

	Resultant Feed Rates (lb/hr)											
		Lead 9	Spike		Chrome Spike				Organic Surrogate Mixture Spike			
	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average
Chlorine/chloride	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.66E+00	6.66E+00	6.64E+00	6.65E+00
Metals												
Aluminum	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Antimony	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Arsenic	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Barium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Beryllium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cadmium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Chromium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.48E-01	3.53E-01	3.48E-01	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Cobalt	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Copper	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Lead	9.91E-02	1.01E-01	9.94E-02	9.97E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Manganese	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mercury	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nickel	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Selenium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Silver	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Thallium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Vanadium	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zinc	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
POHCs												
Monochlorobenzene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Tetrachloroethene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Table 3-5. Feed Composition and Constituent Feed Rates (Chloride, Metals, POHCs), continued

	Resultant Feed Rates (lb/hr)									
		Grand	l Total							
	Run 1	Run 2	Run 3	Average						
Chlorine/chloride	5.95E+01	6.20E+01	5.86E+01	6.00E+01						
Metals										
Aluminum	1.33E+00	2.51E+00	2.40E+00	2.08E+00						
Antimony	1.84E-02	1.81E-02	1.83E-02	1.83E-02						
Arsenic	4.30E-03	4.23E-03	4.88E-03	4.47E-03						
Barium	6.48E-02	1.06E-01	1.14E-01	9.48E-02						
Beryllium	6.76E-04	1.27E-03	1.65E-03	1.20E-03						
Cadmium	4.91E-04	4.23E-04	7.33E-04	5.49E-04						
Chromium	3.59E-01	3.71E-01	3.66E-01	3.65E-01						
Cobalt	4.91E-03	5.44E-03	6.11E-03	5.49E-03						
Copper	3.41E-02	5.26E-02	3.79E-02	4.15E-02						
Lead	1.01E-01	1.03E-01	1.03E-01	1.03E-01						
Manganese	8.54E-01	8.16E-01	5.46E-01	7.39E-01						
Mercury	3.99E-05	4.23E-05	7.02E-05	5.08E-05						
Nickel	2.92E-02	1.54E-01	8.82E-02	9.03E-02						
Selenium	1.87E-03	1.66E-03	1.47E-03	1.67E-03						
Silver	9.21E-03	9.07E-03	9.16E-03	9.15E-03						
Thallium	1.07E-02	1.06E-02	1.07E-02	1.07E-02						
Vanadium	8.29E-03	8.76E-03	1.89E-02	1.20E-02						
Zinc	4.42E-02	5.08E-02	5.13E-02	4.88E-02						
POHCs										
Monochlorobenzene	3.48E+01	3.50E+01	3.50E+01	3.50E+01						
Tetrachloroethene	3.50E+01	3.50E+01	3.48E+01	3.50E+01						
Metal Volatility Groups	3									
SVM	1.02E-01	1.04E-01	1.03E-01	1.03E-01						
LVM	3.64E-01	3.77E-01	3.72E-01	3.71E-01						

Note: If not detected, metals, ash, and chlorine are considered to be present at their detection limit, for purposes of determining constituent feed rate.

Table 3-6. Waste Feed Volatile Organic Compound Concentration

			Spent Activat	ed Carbon Feed	
Constituent	Units	Run 1	Run 2	Run 3	Average
Acetone	ug/kg	3.50E+03	3.60E+03	2.40E+03	3.17E+03
crylonitrile	ug/kg	< 3.80E+03	< 3.80E+03	< 3.80E+03	< 3.80E+03
Benzene	ug/kg	3.80E+03	1.70E+03	1.00E+03	2.17E+03
Bromobenzene	ug/kg	< 2.60E+02	< 2.60E+02	< 2.60E+02	< 2.60E+02
Bromochloromethane	ug/kg	< 1.70E+02	< 1.70E+02	< 1.70E+02	< 1.70E+02
3romodichloromethane	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02
Bromoform	ug/kg	< 2.10E+02	< 2.10E+02	< 2.10E+02	< 2.10E+02
3romomethane	ug/kg	7.40E+02	7.50E+02	< 1.70E+02	< 5.53E+02
-Butanone (MEK)	ug/kg	1.40E+04	3.20E+03	1.20E+03	6.13E+03
-Buytlbenzene	ug/kg	< 3.80E+02	< 3.80E+02	< 3.80E+02	< 3.80E+02
ec-Butylbenzene	ug/kg	< 3.80E+02	< 3.80E+02	< 3.80E+02	< 3.80E+02
ert-Butylbenzene	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02
arbon disulfide	ug/kg	< 1.50E+02	< 1.50E+02	< 1.50E+02	< 1.50E+02
arbon tetrachloride	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02
hlorobenzene	ug/kg	< 1.30E+02	< 1.30E+02	< 1.30E+02	< 1.30E+02
hlorodibromomethane	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02
hloroethane	ug/kg	< 2.80E+02	< 2.80E+02	< 2.80E+02	< 2.80E+02
hloroform	ug/kg	1.90E+03	1.30E+03	1.10E+03	1.43E+03
hloromethane	ug/kg	< 1.00E+03	2.30E+03	< 1.00E+03	< 1.43E+03
-Chlorotoluene	ug/kg	< 3.00E+02	< 3.00E+02	< 3.00E+02	< 3.00E+02
-Chlorotoluene	ug/kg	< 3.00E+02	< 3.00E+02	< 3.00E+02	< 3.00E+02
,2-Dibromo-3-chloropropane	ug/kg	< 1.40E+02	< 1.40E+02	< 1.40E+02	< 1.40E+02
,2-Dibromoethane	ug/kg	< 1.80E+02	< 1.80E+02	< 1.80E+02	< 1.80E+02
)ibromomethane	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02
,2-Dichlorobenzene	ug/kg	< 3.20E+02	< 3.20E+02	< 3.20E+02	< 3.20E+02
,3-Dichlorobenzene	ug/kg	< 3.30E+02	< 3.30E+02	< 3.30E+02	< 3.30E+02
,4-Dichlorobenzene	ug/kg	< 3.30E+02	< 3.30E+02	< 3.30E+02	< 3.30E+02
)ichlorodifluoromethane	ug/kg	< 1.60E+02	< 1.60E+02	< 1.60E+02	< 1.60E+02
,1-Dichloroethane	ug/kg	1.50E+02	3.60E+02	2.60E+02	2.57E+02
,2-Dichloroethane	ug/kg	6.00E+02	1.50E+02	2.10E+02	3.20E+02
is-1,2-Dichloroethene	ug/kg	3.20E+02	1.70E+02	1.50E+02	2.13E+02
ans-1,2-Dichloroethene	ug/kg	< 1.90E+02	< 1.90E+02	< 1.90E+02	< 1.90E+02
,1-Dichloroethene	ug/kg	5.00E+02	6.70E+02	8.40E+02	6.70E+02
,2-Dichloropropane	ug/kg	< 1.80E+02	< 1.80E+02	< 1.80E+02	< 1.80E+02
,3-Dichloropropane	ug/kg	< 2.20E+02	< 2.20E+02	< 2.20E+02	< 2.20E+02
,2-Dichloropropane	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02
is-1,3-Dichloropropene	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02
rans-1,3-Dichloropropene	ug/kg	< 1.50E+02	< 1.50E+02	< 1.50E+02	< 1.50E+02
,1-Dichloropropene	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02
thylbenzene	ug/kg	< 2.40E+02	< 2.40E+02	< 2.40E+02	< 2.40E+02
lexachlorobutadiene	ug/kg	< 5.50E+02	< 5.50E+02	< 5.50E+02	< 5.50E+02
-Hexanone	ug/kg	< 8.00E+02	< 8.00E+02	< 8.00E+02	< 8.00E+02
odomethane	ug/kg	5.50E+02	5.50E+02	5.50E+02	5.50E+02
sopropylbenzene	ug/kg	< 2.80E+02	< 2.80E+02	< 2.80E+02	< 2.80E+02
-Isopropyltoluene	ug/kg	< 4.20E+02	< 4.20E+02	< 4.20E+02	< 4.20E+02
Methylene chloride	ug/kg	< 4.20E+02	< 4.20E+02	< 4.20E+02	< 4.20E+02
-Methyl-2-pentanone	ug/kg	< 8.00E+02	< 8.00E+02	< 8.00E+02	< 8.00E+02
laphthalene	ug/kg	< 2.40E+02	< 2.40E+02	6.00E+02	< 3.60E+02
-Propylbenzene	ug/kg	< 3.60E+02	< 3.60E+02	< 3.60E+02	< 3.60E+02
ityrene	ug/kg	< 2.40E+02	< 2.40E+02	< 2.40E+02	< 2.40E+02
,1,1,2-Tetrachloroethane	ug/kg	< 1.60E+02	< 1.60E+02	< 1.60E+02	< 1.60E+02
,1,2,2,-Tetrachloroethane	ug/kg	< 2.10E+02	< 2.10E+02	< 2.10E+02	< 2.10E+02
etrachloroethene	ug/kg	1.60E+03	2.30E+03	1.10E+03	1.67E+03
etrachioroethene etrahydrofuran	ug/kg	2.70E+03	1.10E+03	< 1.00E+03	< 1.60E+03
oluene	ug/kg	3.20E+02	7.70E+02	2.10E+02	4.33E+02
,2,3-Trichlorobenzene	ug/kg	< 3.60E+02	< 3.60E+02	< 3.60E+02	< 3.60E+02
,2,3-1 richlorobenzene ,2,4-Trichlorobenzene	ug/kg ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02
,2,4-1richlorobenzene ,1,1-Trichloroethane	ug/kg ug/kg	5.60E+03	1.40E+04	1.10E+04	1.02E+04
,1,1-1richloroethane ,1,2-Trichloroethane	ug/kg ug/kg	< 1.80E+02	< 1.80E+02	< 1.80E+02	< 1.80E+02
richloroethene	ug/kg ug/kg	4.30E+04	3.20E+04	2.00E+04	3.17E+04
richloroethene richlorofluoromethane					
	ug/kg	< 3.20E+02		< 3.20E+02	< 3.20E+02
,2,3-Trichloropropane	ug/kg	< 2.70E+02	< 2.70E+02	< 2.70E+02	< 2.70E+02
,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1.70E+03	1.60E+03	1.10E+03	1.47E+03
,2,4-Trimethylbenzene	ug/kg	< 3.20E+02	< 3.20E+02	< 3.20E+02	< 3.20E+02
,2,5-Trimethylbenzene	ug/kg	< 3.10E+02	< 3.10E+02	< 3.10E+02	< 3.10E+02
/inyl acetate	ug/kg	< 6.00E+02	< 6.00E+02	< 6.00E+02	< 6.00E+02
/inyl chloride	ug/kg	< 1.40E+02	< 1.40E+02	< 1.40E+02	< 1.40E+02
n- & p- Xylene	ug/kg	< 4.80E+02	< 4.80E+02	< 4.80E+02	< 4.80E+02
-Xylene	ug/kg	< 2.10E+02	< 2.10E+02	< 2.10E+02	< 2.10E+02
Total xylenes	ug/kg	< 7.00E+02	< 7.00E+02	< 7.00E+02	< 7.00E+0

Table 3-7. Waste Feed Semivolatile Organic Compound Concentration

	Spent Activated Carbon Feed							
Constituent	Units	Run 1	Run 2	Run 3	Average			
Acenaphthene	ug/kg	5.70E+02	5.60E+02	7.80E+02	6.37E+02			
Acenaphthylene	ug/kg	1.30E+03	1.20E+03	1.60E+03	1.37E+03			
Aniline	ug/kg	< 1.60E+02	< 1.60E+02	< 1.60E+02	< 1.60E+02			
Anthracene	ug/kg	2.00E+02	2.40E+02	2.40E+02	2.27E+02			
Benz(a)anthracene	ug/kg	< 1.00E+02	< 1.00E+02	< 1.00E+02	< 1.00E+02			
Benzidine	ug/kg	< 4.20E+03	< 4.20E+03	< 4.20E+03	< 4.20E+03			
Benzo(b)fluoranthene Benzo(k)fluoranthene	ug/kg	< 2.60E+02 < 1.20E+02	< 2.60E+02	< 2.60E+02	< 2.60E+02			
Benzoic acid	ug/kg ug/kg	< 1.20E+02 < 8.50E+02	< 1.20E+02 < 8.50E+02	< 1.20E+02 < 8.50E+02	< 1.20E+02 < 8.50E+02			
Benzo(g,h,i)perylene	ug/kg	< 1.00E+02	< 1.00E+02	< 1.00E+02	< 1.00E+02			
Benzo(a)pyrene	ug/kg	< 2.00E+02	< 2.00E+02	< 2.00E+02	< 2.00E+02			
Benzyl alcohol	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
bis(2-Chloroethoxy)methane	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
bis(2-Chloroethyl)ether	ug/kg	< 9.50E+01	< 9.50E+01	< 9.50E+01	< 9.50E+01			
bis(2-Ethylhexyl)phthalate	ug/kg	< 3.20E+02	< 3.20E+02	4.10E+02	< 3.50E+02			
4-Bromophenyl-phenylether	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
Butyl benzyl phthalate	ug/kg	< 1.40E+02	< 1.40E+02	< 1.40E+02	< 1.40E+02			
Carbazole	ug/kg	< 1.40E+02	< 1.40E+02	< 1.40E+02	< 1.40E+02			
4-Chloroaniline	ug/kg	< 3.40E+02 < 3.40E+02	< 3.40E+02 < 3.40E+02	< 3.40E+02 < 3.40E+02	< 3.40E+02 < 3.40E+02			
4-Chloro-3-Methylphenol	ug/kg	< 3.40E+02 < 9.50E+01	< 3.40E+02 < 9.50E+01	< 3.40E+02 < 9.50E+01	< 3.40E+02 < 9.50E+01			
2-Chloronaphthalene 2-Chlorophenol	ug/kg ug/kg	< 1.20E+01	< 1.20E+02	< 1.20E+02	< 1.20E+02			
4-Chlorophenyl-phenylether	ug/kg	< 1.30E+02	< 1.30E+02	< 1.30E+02	< 1.30E+02			
Chrysene	ug/kg	< 1.00E+02	< 1.00E+02	< 1.00E+02	< 1.00E+02			
Dibenz(a,h)anthracene	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
Dibenzofuran	ug/kg	< 1.10E+02	< 1.10E+02	< 1.10E+02	< 1.10E+02			
Di-n-butylphthalate	ug/kg	< 1.60E+02	< 1.60E+02	< 1.60E+02	< 1.60E+02			
1,2-Dichlorobenzene	ug/kg	2.60E+04	2.30E+04	2.70E+04	2.53E+04			
1,3-Dichlorobenzene	ug/kg	< 8.50E+01	< 8.50E+01	< 8.50E+01	< 8.50E+01			
1,4-Dichlorobenzene	ug/kg	1.90E+03	1.70E+03	2.10E+03	1.90E+03			
3,3'-Dichlorobenzidine	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
2,4-Dichlorophenol	ug/kg	< 9.50E+01 < 8.50E+01	< 9.50E+01	< 9.50E+01	< 9.50E+01			
Diethylphthalate 2,4-Dimethylphenol	ug/kg	< 8.50E+01 < 3.40E+02	< 8.50E+01 < 3.40E+02	< 8.50E+01 < 3.40E+02	< 8.50E+01 < 3.40E+02			
Dimethylphthalate	ug/kg ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02			
1,3-Dinitrobenzene	ug/kg	< 9.50E+01	< 9.50E+01	< 9.50E+01	< 9.50E+01			
4,6-Dinitro-2-methylphenol	ug/kg	< 8.50E+02	< 8.50E+02	< 8.50E+02	< 8.50E+02			
2,4-Dinitrophenol	ug/kg	< 8.00E+02	< 8.00E+02	< 8.00E+02	< 8.00E+02			
2,4-Dinitrotoluene	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
2,6-Dinitrotoluene	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
Di-n-octyl phthalate	ug/kg	< 1.50E+02	< 1.50E+02	< 1.50E+02	< 1.50E+02			
Diphenylamine	ug/kg	< 1.50E+02	< 1.50E+02	< 1.50E+02	< 1.50E+02			
1,2-Diphenylhydrazine	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02			
Fluoranthene	ug/kg	1.40E+02	1.60E+02	1.30E+02	1.43E+02			
Fluorene Hexachlorobenzene	ug/kg ug/kg	7.30E+02 < 9.00E+01	7.10E+02 < 9.00E+01	1.00E+03 < 9.00E+01	8.13E+02 < 9.00E+01			
Hexachlorobutadiene	ug/kg	< 8.50E+01	< 8.50E+01	< 8.50E+01	< 8.50E+01			
Hexachlorocyclopentadiene	ug/kg	< 8.50E+02	< 8.50E+02	< 8.50E+02	< 8.50E+02			
Hexachloroethane	ug/kg	< 1.10E+02	< 1.10E+02	< 1.10E+02	< 1.10E+02			
Indeno(1,2,3-c,d)pyrene	ug/kg	< 9.00E+01	< 9.00E+01	< 9.00E+01	< 9.00E+01			
Isophorone	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
2-Methylnaphthalene	ug/kg	7.70E+03	7.60E+03	1.10E+04	8.77E+03			
2-Methylphenol	ug/kg	< 1.00E+02	< 1.00E+02	< 1.00E+02	< 1.00E+02			
3 & 4-Methylphenol	ug/kg	< 2.20E+02	3.10E+02	< 2.20E+02	< 2.50E+02			
Naphthalene	ug/kg	6.50E+03	5.90E+03	8.70E+03	7.03E+03			
2-Nitroaniline	ug/kg	< 1.60E+02	< 1.60E+02	< 1.60E+02	< 1.60E+02			
3-Nitroaniline 4-Nitroaniline	ug/kg ug/kg	< 9.50E+01 < 3.40E+02	< 9.50E+01 < 3.40E+02	< 9.50E+01 < 3.40E+02	< 9.50E+01 < 3.40E+02			
Nitrobenzene	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
2-Nitrophenol	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
4-Nitrophenol	ug/kg	< 8.50E+02	< 8.50E+02	< 8.50E+02	< 8.50E+02			
N-Nitrosodimethylamine	ug/kg	< 8.50E+01	< 8.50E+01	< 8.50E+01	< 8.50E+01			
N-Nitrosodiphenylamine	ug/kg	< 1.20E+02	< 1.20E+02	< 1.20E+02	< 1.20E+02			
N-Nitroso-di-n-propylamine	ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
Pentachlorophenol	ug/kg	< 8.50E+02	< 8.50E+02	< 8.50E+02	< 8.50E+02			
Phenanthrene	ug/kg	9.20E+02	1.00E+03	1.10E+03	1.01E+03			
Phenol	ug/kg	2.00E+03	7.10E+02	4.50E+02	1.05E+03			
2,2'-oxybis(1-Chloropropane)	ug/kg	< 8.50E+01	< 8.50E+01	< 8.50E+01	< 8.50E+01			
Pyrene	ug/kg	2.10E+02	2.50E+02	2.20E+02	2.27E+02			
Pyridine	ug/kg	< 8.50E+01	< 8.50E+01	< 8.50E+01	< 8.50E+01			
1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ug/kg ug/kg	2.00E+03 < 3.40E+02	2.00E+03 < 3.40E+02	3.00E+03 < 3.40E+02	2.33E+03 < 3.40E+02			
2,4,5-Trichlorophenol	ug/kg ug/kg	< 3.40E+02	< 3.40E+02	< 3.40E+02	< 3.40E+02			
E1.15 . Homorophonor	- agring	0.400,02	1 - 0.40E 102	1 . 0.400 102	0.400,02			

Table 3-8. Summary of Spiking Materials and Rates

Run 1									
Constituent	Compound	Constituent	Spike Material	Spike Material	Constituent Feed	Constituent Feed			
			wt % Constituent	Feed Rate (lb/hr)	Rate (lb/hr)	Rate (g/hr)			
Lead	Pb(NO ₃) ₂	Pb	0.4998%	19.83	9.91E-02	4.50E+01			
Chromium	Cr(NO ₃) ₃ · 9H ₂ O	Cr	1.753%	19.83	3.48E-01	1.58E+02			
Monochlorobenzene	C ₆ H ₅ CI	C ₆ H ₅ CI	99.9976%	34.82	34.82	1.58E+04			
Tetrachloroethene	C ₂ Cl ₄	C ₂ Cl ₄	99.974%	35.05	35.04	1.59E+04			
Organic Surrogate Mixture									
Methylene chloride	CH₂Cl₂	CH ₂ Cl ₂	19.51%	40.87	7.97	3.62E+03			
Ethylene glycol	C ₂ H ₆ O ₂	C ₂ H ₆ O ₂	19.51%	40.87	7.97	3.62E+03			
Toluene	C ₆ H ₅ CH ₃	C ₆ H ₅ CH ₃	41.44%	40.87	16.94	7.68E+03			
Naphthalene	C ₁₀ H ₈	C ₁₀ H ₈	19.50%	40.87	7.97	3.62E+03			

	Run 2									
Constituent	Compound	Constituent	Spike Material	Spike Material		Constituent Feed				
			wt % Constituent	Feed Rate (lb/hr)	Rate (lb/hr)	Rate (g/hr)				
Lead	Pb(NO ₃) ₂	Pb	0.4998%	20.15	1.01E-01	4.57E+01				
Chromium	Cr(NO ₃) ₃ · 9H ₂ O	Cr	1.753%	20.15	3.53E-01	1.60E+02				
Monochlorobenzene	C ₆ H ₅ CI	C ₆ H ₅ CI	99.9976%	35.05	35.05	1.59E+04				
Tetrachloroethene	C ₂ Cl ₄	C ₂ Cl ₄	99.974%	35.03	35.02	1.59E+04				
Organic Surrogate Mixture										
Methylene chloride	CH ₂ Cl ₂	CH ₂ Cl ₂	19.51%	40.88	7.98	3.62E+03				
Ethylene glycol	C ₂ H ₆ O ₂	C ₂ H ₆ O ₂	19.51%	40.88	7.98	3.62E+03				
Toluene	C ₆ H ₅ CH ₃	C ₆ H ₅ CH ₃	41.44%	40.88	16.94	7.68E+03				
Naphthalene	C ₁₀ H ₈	C ₁₀ H ₈	19.50%	40.88	7.97	3.62E+03				

Run 3									
Constituent	Compound	Constituent	Spike Material	Spike Material	Constituent Feed	Constituent Feed			
			wt % Constituent	Feed Rate (lb/hr)	Rate (lb/hr)	Rate (g/hr)			
Lead	Pb(NO ₃) ₂	Pb	0.4998%	19.88	9.94E-02	4.51E+01			
Chromium	Cr(NO ₃) ₃ · 9H ₂ O	Cr	1.753%	19.88	3.48E-01	1.58E+02			
Monochlorobenzene	C ₆ H ₅ CI	C ₆ H ₅ CI	99.9976%	35.05	35.05	1.59E+04			
Tetrachloroethene	C ₂ Cl ₄	C ₂ Cl ₄	99.974%	34.86	34.85	1.58E+04			
Organic Surrogate Mixture									
Methylene chloride	CH ₂ Cl ₂	CH ₂ Cl ₂	19.51%	40.73	7.95	3.60E+03			
Ethylene glycol	C ₂ H ₆ O ₂	C ₂ H ₆ O ₂	19.51%	40.73	7.95	3.60E+03			
Toluene	C ₆ H ₅ CH ₃	C ₆ H ₅ CH ₃	41.44%	40.73	16.88	7.66E+03			
Naphthalene	C ₁₀ H ₈	C ₁₀ H ₈	19.50%	40.73	7.94	3.60E+03			

Revision: 0

Date: 06/30/06

Table 3-9. Makeup Water, Caustic, and Scrubber Purge POHC Concentration

		Makeup Water (ug/L)				Causti	ic (ug/L)		Scrubber Blowdown (ug/L)			POTW Discharge (ug/L)				
Constituent	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average
							Met	als								
luminum	< 1.10E+02	< 1.10E+02	< 1.10E+02	< 1.10E+02	< 4.40E+02	NA	NA	< 4.40E+02	1.37E+04	1.17E+04	1.76E+04	1.43E+04	1.14E+02	< 1.10E+02	1.48E+02	< 1.24E+0
ntimony	< 1.40E+01	< 1.40E+01	< 1.40E+01	< 1.40E+01	< 5.60E+01	NA	NA	< 5.60E+01	< 1.40E+01	< 1.40E+01	1.77E+01	< 1.52E+01	< 1.40E+01	< 1.40E+01	< 1.40E+01	< 1.40E+0
Arsenic	< 5.10E+00	5.90E+00	< 5.10E+00	< 5.37E+00	< 2.04E+01	NA	NA	< 2.04E+01	3.67E+01	2.61E+01	3.93E+01	3.40E+01	1.37E+01	1.26E+01	1.19E+01	1.27E+
Barium	5.12E+01	5.19E+01	4.92E+01	5.08E+01	3.63E+02	NA	NA	3.63E+02	8.74E+02	7.65E+02	1.13E+03	9.23E+02	2.47E+02	2.26E+02	2.38E+02	2.37E+
Beryllium	< 1.80E+00	< 1.80E+00	< 1.80E+00	< 1.80E+00	< 7.20E+00	NA	NA	< 7.20E+00	3.80E+00	3.70E+00	5.40E+00	4.30E+00	< 1.80E+00	< 1.80E+00	< 1.80E+00	< 1.80E+
admium	< 8.20E-01	< 8.20E-01	< 8.20E-01	< 8.20E-01	< 3.30E+00	NA	NA	< 3.30E+00	1.13E+01	1.17E+01	1.37E+01	1.22E+01	< 8.20E-01	< 8.20E-01	2.40E+00	< 1.35E+
hromium	< 3.90E+00	< 3.90E+00	< 3.90E+00	< 3.90E+00	3.64E+02	NA	NA	3.64E+02	1.72E+03	1.75E+03	2.90E+03	2.12E+03	2.46E+01	1.30E+01	2.51E+01	2.09E+
obalt	< 2.20E+00	< 2.20E+00	< 2.20E+00	< 2.20E+00	< 8.80E+00	NA	NA	< 8.80E+00	3.15E+01	2.64E+01	4.05E+01	3.28E+01	< 2.20E+00	< 2.20E+00	< 2.20E+00	< 2.20E+
opper	< 7.00E+00	< 7.00E+00	< 7.00E+00	< 7.00E+00	< 2.80E+01	NA	NA	< 2.80E+01	1.78E+03	9.65E+02	6.69E+02	1.14E+03	< 7.00E+00	< 7.00E+00	< 7.00E+00	< 7.00E+
.ead	< 3.70E+00	< 3.70E+00	< 3.70E+00	< 3.70E+00	9.75E+01	NA	NA	9.75E+01	7.21E+02	5.92E+02	1.51E+03	9.41E+02	< 3.70E+00	< 3.70E+00	< 3.70E+00	< 3.70E+
/langanese	1.54E+01	1.85E+01	1.40E+01	1.60E+01	7.48E+01	NA	NA	7.48E+01	3.38E+03	3.10E+03	4.32E+03	3.60E+03	1.15E+02	6.12E+01	8.59E+01	8.74E+
Mercury	< 6.00E-02	< 6.00E-02	< 6.00E-02	< 6.00E-02	3.50E+00	NA	NA	3.50E+00	3.50E-01	4.20E-01	4.50E-01	4.07E-01	< 6.00E-02	< 6.00E-02	< 6.00E-02	< 6.00E-
lickel	< 3.80E+00	< 3.80E+00	< 3.80E+00	< 3.80E+00	1.50E+02	NA	NA	1.50E+02	4.33E+02	3.97E+02	4.05E+02	4.12E+02	< 3.80E+00	< 3.80E+00	4.80E+00	< 4.13E+
Selenium	< 4.30E+00	< 4.30E+00	< 4.30E+00	< 4.30E+00	< 1.72E+01	NA	NA	< 1.72E+01	1.19E+01	8.80E+00	1.21E+01	1.09E+01	1.10E+01	1.00E+01	9.00E+00	1.00E+
Silver	< 9.70E+00	< 9.70E+00	< 9.70E+00	< 9.70E+00	5.30E+01	NA	NA	5.30E+01	< 9.70E+00	< 9.70E+00	< 9.70E+00	< 9.70E+00	< 9.70E+00	< 9.70E+00	< 9.70E+00	< 9.70E+
hallium	< 1 NNF+N1	< 1 NNF+N1	< 1 NNF+N1	< 1 NNF+N1	< 4 NNF+N1	NA	NA	< 4 NNF+N1	< 1 NNF+N1	< 1.00F+01	< 1 NNF+N1	< 1 NNF+N1	< 1.00F+01	< 1.00F+01	< 1 NNF+N1	< 100F#
'anadium	< 5.00E+00	< 5.00E+00	< 5.00E+00	< 5.00E+00	< 2.00E+01	NA	NA	< 2.00E+01	8.43E+01	5.81E+01	1.09E+02	8.38E+01	2.56E+01	1.66E+01	2.10E+01	2.11E+
inc	< 3.80E+00	< 3.80E+00	< 3.80E+00	< 3.80E+00	2.04E+02	NA	NA	2.04E+02	7.65E+02	5.64E+02	6.45E+02	6.58E+02	< 3.80E+00	< 3.80E+00	< 3.80E+00	< 3.80E+
							Volatile (
cetone	4.40E+00	3.80E+00	4.50E+00	4.23E+00	4.50E+00	NA	NA	4.50E+00	ND	4.10E+00	3.60E+00	3.85E+00	3.70E+00	3.70E+00	4.80E+00	4.07E+
Bromobenzene	ND	ND	ND	ND	1.80E-01	NA	NA	1.80E-01	ND	ND	ND	ND	ND	ND	ND	ND
romodichloromethane	3.20E+00	4.10E+00	2.50E+00	3.27E+00	8.60E-01	NA	NA	8.60E-01	ND	ND	ND	ND	ND	8.90E-01	1.00E+00	9.45E-
Iromoform	4.00E+01	3.20E+01	2.80E+01	3.33E+01	2.80E+00	NA	NA	ND	9.90E-01	9.20E-01	1.00E+00	9.70E-01	2.00E+00	2.00E+00	2.10E+00	2.03E+
arbon disulfide	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	1.60E-01	1.60E-
hlorodibromomethane	1.30E+01	1.30E+01	8.90E+00	1.16E+01	1.00E+00	NA	NA	1.00E+00	9.20E-01	8.70E-01	8.90E-01	8.93E-01	1.40E+00	1.30E+00	1.40E+00	1.37E+
hloroform	5.60E-01	6.40E-01	6.20E-01	6.07E-01	1.70E-01	NA	NA	1.70E-01	ND	ND	ND	ND	1.40E-01	1.50E-01	1.40E-01	1.43E-
,2-Dichloroethane	ND	1.30E-01	1.20E-01	1.25E-01	1.30E-01	NA	NA	1.30E-01	ND	ND	ND	ND	ND	ND	ND	ND
domethane	ND	ND	ND	ND	ND	NA	NA	ND	5.50E-01	ND	ND	5.50E-01	ND	ND	ND	ND
fethylene chloride	5.50E-01	2.40E+00	2.00E+00	1.65E+00	5.30E-01	NA	NA	ND	ND	2.30E+00	8.40E-01	1.57E+00	3.50E-01	2.00E+00	6.50E-01	1.00E+
etrachloroethene	3.30E-01	3.10E-01	4.50E-01	3.63E-01	2.40E-01	NA	NA	2.40E-01	ND	ND	ND	ND	1.30E-01	ND	ND	1.30E-
oluene	ND	4.10E-01	3.10E-01	3.60E-01	ND	NA	NA	ND	ND	4.10E-01	ND	4.10E-01	ND	4.30E-01	1.20E-01	2.75E
							Seimvolatil	e Organics								
s(2-ethylhexyl)phthalate	ND	ND	ND	ND	4.10E+01	NA NA	NA.		ND	ND	ND	ND	ND	ND	ND	ND.

Note: Only detected organics shown on this table.

Table 4-1. Regulatory Compliance Summary

Parameter	Units	Test Objective	Run 1	Run 2	Run 3	Test Average
DRE - Chlorobenzene	%	> 99.99	> 99.9914	> 99.9970	99.9940	> 99.9941
DRE - Tetrachloroethene	%	> 99.99	> 99.9951	> 99.9982	> 99.9976	> 99.9970
Stack gas filterable particulate matter	mg/dscm	< 34	21	10	18	16
concentration (b)	(gr/dscf)	< 0.015	0.0090	0.0046	0.0079	0.0072
Stack gas PCDD/PCDF (b)	ng TEQ/dscm	< 0.40	0.065	0.052	0.062	0.060
Stack gas mercury (b)	ug/dscm	< 130	< 6.1	< 5.8	< 7.5	< 6.5
Stack gas semivolatile metals (Cd + Pb) concentration (b)	ug/dscm	< 240	210	130	360	230
Stack gas low volatility metals (As + Be + Cr) concentration (b)	ug/dscm	< 97	< 35	< 12	< 21	< 23
Stack gas HCl/Cl₂ (b)	ppmv as HCI	< 77	5.4	3.2	3.0	3.9
Stack gas carbon monoxide concentration (b)	ppmv	< 100	11.5	10.4	15.6	12.5
Stack gas total hydrocarbon concentration (b)	ppmv, as propane	< 10	< 0.6	< 0.6	< 0.6	< 0.6
Stack gas oxygen concentration	vol%, dry	NA	9.8	8.9	9.3	9.3

⁽a) Stack gas THC and O₂ data were obtained using Airtech's temporary CEMS.

Note: Compliance with regulatory standards is based on the arithmetic average of the three test runs, except for DRE, where each run must meet the specified criteria [see 40 CFR 63.1206(b)(12)(ii)]. All values are reported to two significant figures.

⁽b) Corrected to 7% oxygen, dry basis.

Table 4-2. POHC Feed Rates, Emissions Rates, and DREs

		Test Results					
Parameter	Units	Run 1	Run 2	Run 3	Average		
Monochlorobenzene feed rate	lb/hr	34.81	35.05	35.05	34.97		
Tetrachloroethene feed rate	lb/hr	35.04	35.02	34.84	34.97		
Monochlorobenzene emission rate	lb/hr	< 2.99E-03	< 1.05E-03	2.09E-03	< 2.04E-03		
Tetrachloroethene emission rate	lb/hr	< 1.73E-03	< 6.26E-04	< 8.35E-04	< 1.06E-03		
Monochlorobenzene DRE	%	> 99.9914	> 99.9970	99.9940	> 99.9941		
Tetrachloroethene DRE	%	> 99.9951	> 99.9982	> 99.9976	> 99.9970		

Table 4-3. PCDD/PCDF Emission Summary – Run 1

Parameter	Units	Measured Value		
Stack Sampli	ng Parameters			
Net sampling time	minutes		240	
Stack gas flow rate	dscfm		5,290	
	acfm		11,760	
Stack gas temperature	°F		176	
Stack gas velocity	ft/min		3,744	
Stack gas sample volume	dscf		139.210	
	dscm		3.943	
Isokinetic	%		101.2	
Stack gas moisture content	vol%		45.2	
Stack gas carbon dioxide	vol %, dry		6.4	
Stack gas oxygen	vol %, dry		9.8	
	/PCDF			
Total PCDD/PCDF	pg/sample	<	12288	
Stack gas PCDD/PCDF concentration	ng/dscm	<	3.12E+00	
Stack gas PCDD/PCDF concentration	ng/dscm @7% O ₂	<	3.90E+00	
PCDD/PCDF emission rate	g/s	<	7.78E-09	
PCDD/PCDF Toxic Equ	ivalents as 2,3,7,8-TCI)D		
Stack gas PCDD/PCDF concentration	ng/dscm	<	5.23E-02	
Stack gas PCDD/PCDF concentration	ng/dscm @7% O₂	<	6.53E-02	
PCDD/PCDF emission rate	g/s	<	1.30E-10	

Note: dscf = Dry standard cubic feet

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute

Standard conditions are 68°F, 29.92 in. Hg (20°C, 760 mm Hg)

Table 4-4. PCDD/PCDF Emission Summary – Run 2

Parameter	Units	Measured Value		
Stack Samplii	ng Parameters			
Net sampling time	minutes		240	
Stack gas flow rate	dscfm		3,780	
	acfm		8,320	
Stack gas temperature	°F		175	
Stack gas velocity	ft/min		2,646	
Stack gas sample volume	dscf		119.220	
	dscm		3.376	
Isokinetic	%		100.9	
Stack gas moisture content	vol%		44.4	
Stack gas carbon dioxide	vol %, dry		7.2	
Stack gas oxygen	vol %, dry		8.9	
	/PCDF			
Total PCDD/PCDF	pg/sample	<	7223.8	
Stack gas PCDD/PCDF concentration	ng/dscm	<	2.12E+00	
Stack gas PCDD/PCDF concentration	ng/dscm @7% O ₂	<	2.45E+00	
PCDD/PCDF emission rate	g/s	<	3.78E-09	
PCDD/PCDF Toxic Equi)D		
Stack gas PCDD/PCDF concentration	ng/dscm	<	4.52E-02	
Stack gas PCDD/PCDF concentration	ng/dscm @7% O ₂	<	5.23E-02	
PCDD/PCDF emission rate	g/s	<	8.07E-11	

Note: dscf = Dry standard cubic feet

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute

Standard conditions are 68°F, 29.92 in. Hg (20°C, 760 mm Hg)

Table 4-5. PCDD/PCDF Emission Summary – Run 3

Parameter	Units	Measured Value			
Stack Samp	ling Parameters				
Net sampling time	minutes		240		
Stack gas flow rate	dscfm		4,040		
_	acfm		8,850		
Stack gas temperature	°F		175		
Stack gas velocity	ft/min		2,820		
Stack gas sample volume	dscf	126.180			
	dscm	3.573			
Isokinetic	%	99.9			
Stack gas moisture content	vol%	44.5			
Stack gas carbon dioxide	vol %, dry	7.1			
Stack gas oxygen	vol %, dry		9.3		
	D/PCDF				
Total PCDD/PCDF	pg/sample	<	9067.1		
Stack gas PCDD/PCDF concentration	ng/dscm	<	2.49E+00		
Stack gas PCDD/PCDF concentration	ng/dscm @7% O ₂	<	2.98E+00		
PCDD/PCDF emission rate	g/s	<	4.75E-09		
PCDD/PCDF Toxic Eq	uivalents as 2,3,7,8-TCI)D			
Stack gas PCDD/PCDF concentration	ng/dscm	T<	5.23E-02		
Stack gas PCDD/PCDF concentration	ng/dscm @7% O₂	<	6.25E-02		
PCDD/PCDF emission rate	g/s	<	9.96E-11		

Note: dscf = Dry standard cubic feet

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute

Standard conditions are 68°F, 29.92 in. Hg (20°C, 760 mm Hg)

Table 4-6. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 1

Parameter	Units	Measured Value
Stack Sa	mpling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	5,030
	acfm	11,320
	dscm/min	142.45
Stack gas temperature	°F	175
Stack gas velocity	ft/min	3,606
Stack gas sample volume	dscf	72.660
	dscm	2.058
Isokinetic	%	93.7
Stack gas moisture content	vol %	45.9
Stack gas carbon dioxide content	vol %, dry	6.3
Stack gas oxygen content	vol %, dry	9.6
Hydrogen o	chloride and chlorine	
HCI collected	mg	11.8
Cl ₂ collected	mg	1.95
Stack gas HCI concentration	mg/dscm	5.73E+00
	mg/dscm @7% O₂	7.04E+00
Stack gas HCI emission rate	lb/h	1.08E-01
	kg/h	4.90E-02
	g/s	1.36E-02
Stack gas Cl ₂ concentration	mg/dscm	9.48E-01
	mg/dscm @7% O₂	1.16E+00
Stack gas Cl ₂ emission rate	lb/h	1.79E-02
	kg/h	8.10E-03
	g/s	2.25E-03
Stack gas HCI+Cl ₂ concentration	ppmv, dry	4.42E+00
expressed as HCI equivalents	ppmv, dry @7% O₂	5.43E+00
	Particulate	
Particulate matter collected	mg	34.3
Particulate concentration	gr/dscf	7.29E-03
	gr/dscf @ 7% O₂	8.95E-03
	mg/dscm	1.67E+01
	mg/dscm @ 7% O₂	2.05E+01
Particulate emission rate	lb/h	3.14E-01
	kg/h	1.42E-01
	g/s	3.96E-02

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 4-7. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 2

Parameter	Units	Measured Value
Stack San	npling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	3,850
	acfm	8,580
	dscm/min	109.03
Stack gas temperature	°F	174
Stack gas velocity	ft/min	2,730
Stack gas sample volume	dscf	74.990
	dscm	2.124
Isokinetic	%	96.0
Stack gas moisture content	vol %	45.1
Stack gas carbon dioxide content	vol %, dry	7.0
Stack gas oxygen content	vol %, dry	8.9
Hydrogen c	hloride and chlorine	
HCI collected	mg	6.95
Cl ₂ collected	mg	2.01
Stack gas HCl concentration	mg/dscm	3.27E+00
	mg/dscm @7% O₂	3.79E+00
Stack gas HCI emission rate	lb/h	4.72E-02
	kg/h	2.14E-02
	g/s	5.95E-03
Stack gas Cl ₂ concentration	mg/dscm	9.46E-01
	mg/dscm @7% O₂	1.10E+00
Stack gas Cl ₂ emission rate	lb/h	1.37E-02
<u> </u>	kg/h	6.19E-03
	g/s	1.72E-03
Stack gas HCI+Cl ₂ concentration	ppmv, dry	2.80E+00
expressed as HCl equivalents	ppmv, dry @7% O₂	3.24E+00
	articulate	
Particulate matter collected	mg	19.4
Particulate concentration	gr/dscf	3.99E-03
Ī	gr/dscf @ 7% O₂	4.62E-03
	mg/dscm	9.13E+00
Ī	mg/dscm @ 7% O₂	1.06E+01
Particulate emission rate	lb/h	1.32E-01
<u> </u>	kg/h	5.98E-02
<u> </u>	g/s	1.66E-02

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 4-8. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 3

Parameter	Units	Measured Value
Stack Sar	npling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	4,090
	acfm	8,970
	dscm/min	115.83
Stack gas temperature	°F	174
Stack gas velocity	ft/min	2,856
Stack gas sample volume	dscf	79.290
	dscm	2.246
Isokinetic	%	95.7
Stack gas moisture content	vol %	44.8
Stack gas carbon dioxide content	vol %, dry	7.0
Stack gas oxygen content	vol %, dry	9.3
	hloride and chlorine	
HCI collected	mg	6.49
Cl ₂ collected	mg	1.94
Stack gas HCI concentration	mg/dscm	2.89E+00
	mg/dscm @7% O₂	3.46E+00
Stack gas HCI emission rate	lb/h	4.43E-02
	kg/h	2.01E-02
	g/s	5.58E-03
Stack gas Cl ₂ concentration	mg/dscm	8.64E-01
	mg/dscm @7% O₂	1.03E+00
Stack gas Cl ₂ emission rate	lb/h	1.32E-02
	kg/h	6.00E-03
	g/s	1.67E-03
Stack gas HCI+Cl ₂ concentration	ppmv, dry	2.49E+00
expressed as HCI equivalents	ppmv, dry @7% O₂	2.98E+00
	⁾ articulate	
Particulate matter collected	mg	33.6
Particulate concentration	gr/dscf	6.54E-03
	gr/dscf @ 7% O₂	7.83E-03
	mg/dscm	1.50E+01
	mg/dscm @ 7% O₂	1.79E+01
Particulate emission rate	lb/h	2.29E-01
	kg/h	1.04E-01
	g/s	2.89E-02

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 4-9. Metals Emission Summary – Run 1

Parameter	Units	Measured Value			
Stack Sa	mpling Parameters				
Net sampling time	minutes	120		Lead	
Stack gas flow rate	dscfm	4,970	Metal collected	ug	356.8
Stack gas now rate	acfm	11,260	Metal concentration	ug/dscm	1.64E+02
	dscm/min	140.75	I Wetar concentration	ug/dscm @ 7% O ₂	2.01E+02
Steels are townserstone	oscrivinin °F	176	Matal ausianian vata		3.05E-03
Stack gas temperature		3,582	Metal emission rate	lb/h	3.85E-04
Stack gas velocity	ft/min			g/s	3.00E-U4
Stack gas sample volume	dscf	76.790		Manganese	T
1.12.2	dscm	2.175	Metal collected	ug	65.8
Isokinetic	%	98.2	Metal concentration	ug/dscm	3.03E+01
Stack gas moisture content	vol %	46.2	l	ug/dscm @ 7% O ₂	3.72E+01
Stack gas carbon dioxide content	vol %, dry	6.3	Metal emission rate	lb/h	5.63E-04
Stack gas oxygen content	vol %, dry	9.6		g/s	7.10E-05
	Aluminum			Mercury	
Metal collected	ug	132.3	Metal collected	ug	< 10.8
Metal concentration	ug/dscm	6.08E+01	Metal concentration	ug/dscm	< 4.98E+00
	ug/dscm @ 7% O ₂	7.47E+01		ug/dscm @ 7% O ₂	< 6.11E+00
Metal emission rate	lb/h	1.13E-03	Metal emission rate	lb/h	< 9.26E-05
	g/s	1.43E-04		g/s	< 1.17E-05
	Antimony			Nickel	
Metal collected	ug	< 5.3	Metal collected	ug	12.0
Metal concentration	ug/dscm	< 2.44E+00	Metal concentration	ug/dscm	5.52E+00
	ug/dscm @ 7% O₂	< 2.99E+00		ug/dscm @ 7% O₂	6.78E+00
Metal emission rate	lb/h	< 4.54E-05	Metal emission rate	lb/h	1.03E-04
	q/s	< 5.72E-06		q/s	1.29E-05
	Arsenic			Selenium	
Metal collected	ug	< 5.9	Metal collected	ug	4.5
Metal concentration	ug/dscm	< 2.73E+00	Metal concentration	ug/dscm	2.07E+00
	ug/dscm @ 7% O ₂	< 3.35E+00		ug/dscm @ 7% O ₂	2.54E+00
Metal emission rate	lb/h	< 5.08E-05	Metal emission rate	lb/h	3.85E-05
	g/s	< 6.40E-06		g/s	4.85E-06
	Barium			Silver	
Metal collected	ug	10.2	Metal collected	ug	2.6
Metal concentration	ug/dscm	4.69E+00	Metal concentration	ug/dscm	1.20E+00
	ug/dscm @ 7% O₂	5.76E+00		ug/dscm @ 7% O₂	1.47E+00
Metal emission rate	lb/h	8.73E-05	Metal emission rate	lb/h	2.23E-05
	g/s	1.10E-05		g/s	2.80E-06
	Beryllium			Thallium	
Metal collected	ug	< 0.4	Metal collected	ug	< 11.0
Metal concentration	ug/dscm	< 1.75E-01	Metal concentration	ug/dscm	< 5.06E+00
	ug/dscm @ 7% O ₂	< 2.15E-01		ug/dscm @ 7% O₂	< 6.21E+00
Metal emission rate	lb/h	< 3.25E-06	Metal emission rate	lb/h	< 9.42E-05
	g/s	< 4.10E-07		g/s	< 1.19E-05
	Cadmium			Vanadium	
Metal collected	ug	12.1	Metal collected	ug	< 3.0
Metal concentration	ug/dscm	5.56E+00	Metal concentration	ug/dscm	< 1.38E+00
	ug/dscm @ 7% O ₂	6.83E+00	l	ug/dscm @ 7% O ₂	< 1.69E+00
Metal emission rate	lb/h	1.04E-04	Metal emission rate	lb/h	< 2.57E-05
	g/s	1.31E-05		g/s	< 3.24E-06
	Chromium			Zinc	
Metal collected	ug	56.0	Metal collected	ug	218.4
Metal concentration	ug/dscm	2.58E+01	Metal concentration	ug/dscm	1.00E+02
	ug/dscm @ 7% O ₂	3.16E+01		ug/dscm @ 7% O₂	1.23E+02
Metal emission rate	lb/h	4.79E-04	Metal emission rate	lb/h	1.87E-03
	g/s	6.04E-05		g/s	2.36E-04
	Cobalt				
Metal collected	ug	< 1.1			
Metal concentration	ug/dscm	< 5.15E-01			
	ug/dscm @ 7% O₂	< 6.32E-01			
Metal emission rate	lb/h	< 9.59E-06			
	g/s	< 1.21E-06			
	Copper				
Metal collected	ug	167.1			
	ug/dscm	7.68E+01			
Metal concentration					
	ug/dscm @ 7% O₂	9.44E+01			
Metal concentration Metal emission rate					

Note: dscf = Dry standard cubic feet dscfm = Dry standard cubic feet per minute acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 4-10. Metals Emission Summary – Run 2

Parameter	Units	Measured Value			
Charle Ca					
Stack Sa Net sampling time	mpling Parameters minutes	120		Lead	
Stack gas flow rate	dscfm	3,860	Metal collected	·····	250.4
Stack gas now rate				ug	
	acfm	8,600	Metal concentration	ug/dscm	1.11E+02
	dscm/min	109.32		ug/dscm @ 7% O₂	1.29E+02
Stack gas temperature	°F	175	Metal emission rate	lb/h	1.61E-03
Stack gas velocity	ft/min	2,736		g/s	2.03E-04
Stack gas sample volume	dscf	79.370		Manganese	
	dscm	2.248	Metal collected	ug	42.0
Isokinetic	%	102.9	Metal concentration	ug/dscm	1.87E+01
Stack gas moisture content	vol %	45.1		ug/dscm @ 7% O₂	2.16E+01
Stack gas carbon dioxide content	vol %, dry	7.0	Metal emission rate	lb/h	2.70E-04
Stack gas oxygen content	vol %, dry	8.9		g/s	3.40E-05
	Aluminum			Mercury	
Metal collected	ug	123.2	Metal collected	ug	< 11.3
Metal concentration	ug/dscm	5.48E+01	Metal concentration	ug/dscm	< 5.02E+00
motal collectifiation	ug/dscm @ 7% O ₂	6.34E+01	c.ar concentration	ug/dscm @ 7% O2	< 5.81E+00
Metal emission rate	ug/ascm (a2 7 % O2 lb/h	7.93E-04	Metal emission rate	ug/ascm (2) 7 % ∪2 b/h	< 7.26E-05
wierai ettiissivii tale		7.93E-04 9.99E-05	wietai emissium rate		< 7.26E-05
	g/s	9.99E-05		g/s	< 9.15E-06
Maralanda	Antimony		N4-1-1	Nickel	
Metal collected	ug	< 4.8	Metal collected	ug	11.4
Metal concentration	ug/dscm	< 2.14E+00	Metal concentration	ug/dscm	5.07E+00
	ug/dscm @ 7% O ₂	< 2.47E+00		ug/dscm @ 7% O₂	5.87E+00
Metal emission rate	lb/h	< 3.09E-05	Metal emission rate	lb/h	7.33E-05
	g/s	< 3.89E-06		g/s	9.24E-06
	Arsenic			Selenium	
Metal collected	ug	< 2.7	Metal collected	ug	4.0
Metal concentration	ug/dscm	< 1.21E+00	Metal concentration	ug/dscm	1.78E+00
	ug/dscm @ 7% O ₂	< 1.41E+00		ug/dscm @ 7% O₂	2.06E+00
Metal emission rate	lb/h	< 1.76E-05	Metal emission rate	lb/h	2.57E-05
	g/s	< 2.21E-06		g/s	3.24E-08
	Barium			Silver	
Metal collected	ug	9.0	Metal collected	ug	5.7
Metal concentration	ug/dscm	4.00E+00	Metal concentration	ug/dscm	2.54E+00
	ug/dscm @ 7% O ₂	4.63E+00		ug/dscm @ 7% O₂	2.93E+00
Metal emission rate	lb/h	5.79E-05	Metal emission rate	lb/h	3.67E-05
	g/s	7.30E-06		g/s	4.62E-06
	Beryllium			Thallium	
Metal collected	ug	< 0.4 ND	Metal collected	ug	< 10.6
Metal concentration	ug/dscm	< 1.60E-01 ND	Metal concentration	ug/dscm	< 4.72E+00
	ug/dscm @ 7% O₂	< 1.85E-01 ND		ug/dscm @ 7% O ₂	< 5.46E+00
Metal emission rate	lb/h	< 2.32E-06 ND	Metal emission rate	lb/h	< 6.82E-05
	g/s	< 2.92E-07 ND		g/s	< 8.59E-08
	Cadmium			Vanadium	
Metal collected	ug	7.9	Metal collected	ug	< 1.6
Metal concentration	ug/dscm	3.51E+00	Metal concentration	ug/dscm	< 7.12E-01
	ug/dscm @ 7% O₂	4.07E+00		ug/dscm @ 7% O₂	< 8.24E-01
Metal emission rate	lb/h	5.08E-05	Metal emission rate	lb/h	< 1.03E-05
	g/s	6.40E-06		g/s	< 1.30E-08
	Chromium			Zinc	
Metal collected	ug	20.2	Metal collected	ug	136.2
Metal concentration	ug/dscm	8.99E+00	Metal concentration	ug/dscm	6.06E+01
	ug/dscm @ 7% O ₂	1.04E+01		ug/dscm @ 7% O₂	7.01E+01
Metal emission rate	lb/h	1.30E-04	Metal emission rate	lb/h	8.76E-04
	g/s	1.64E-05		g/s	1.10E-04
	Cobalt				
Metal collected	ug	< 1.0 ND			
Metal concentration	ug/dscm	< 4.45E-01 ND			
	ug/dscm @ 7% O₂	< 5.15E-01 ND			
Metal emission rate	lb/h	< 6.43E-06 ND			
	g/s	< 8.11E-07 ND			
	Copper				
Metal collected	ug	108.1			
Metal concentration	ug/dscm	4.81E+01			
	ug/dscm @ 7% O ₂	5.56E+01			
Metal emission rate	lb/h	6.95E-04			
omnooren rate	13(11	0.332-04			

8.76E-05

Note: dscf = Dry standard cubic feet dscfm = Dry standard cubic feet per minute acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 4-11. Metals Emission Summary – Run 3

Parameter	Units	Measured Value			
Stack Sa	mpling Parameters				
Net sampling time	minutes	120		Lead	
Stack gas flow rate	dscfm	4,000	Metal collected	ug	694.2
ŭ	acfm	8,920	Metal concentration	ug/dscm	2.97E+02
	dscm/min	113.28		ug/dscm @ 7% O2	3.55E+02
Stack gas temperature	°F	175	Metal emission rate	lb/h	4.45E-03
Stack gas velocity	ft/min	2,838	Initial chilocolon rate	g/s	5.60E-04
Stack gas sample volume	dscf	82.610		Manganese	
Stack gas cample foliants	dscm	2.340	Metal collected	ug	41.4
Isokinetic	%	103.2	Metal concentration	ug/dscm	1.77E+01
Stack gas moisture content	vol %	45.5	Wetar concentration	ug/dscm @ 7% O ₂	2.12E+01
Stack gas moisture content	vol %, dry	7.0	Metal emission rate	Ib/h	2.65E-04
Stack gas oxygen content	vol %, dry	9.3	Wetar emission rate	g/s	3.34E-05
	Aluminum	3.3		Mercury	J.34E-03
		125.2	Matal callantad		T- 14.7
Metal collected	ug		Metal collected	ug	< 14.7
Metal concentration	ug/dscm	5.35E+01	Metal concentration	ug/dscm	< 6.28E+00
	ug/dscm @ 7% O ₂	6.40E+01	L	ug/dscm @ 7% O₂	< 7.52E+00
Metal emission rate	lb/h	8.02E-04	Metal emission rate	lb/h	< 9.42E-05
	g/s	1.01E-04		g/s	< 1.19E-05
	Antimony			Nickel	
Metal collected	ug	< 4.9	Metal collected	ug	9.4
Metal concentration	ug/dscm	< 2.09E+00	Metal concentration	ug/dscm	4.02E+00
	ug/dscm @ 7% O ₂	< 2.51E+00		ug/dscm @ 7% O₂	4.81E+00
Metal emission rate	lb/h	< 3.14E-05	Metal emission rate	lb/h	6.02E-05
	g/s	< 3.95E-06		g/s	7.59E-06
	Arsenic			Selenium	
Metal collected	ug	< 3.7	Metal collected	ug	3.9
Metal concentration	ug/dscm	< 1.59E+00	Metal concentration	ug/dscm	1.68E+00
Metal emission rate	ug/dscm @ 7% O ₂	< 1.91E+00		ug/dscm @ 7% O₂	2.02E+00
	lb/h	< 2.39E-05	Metal emission rate	lb/h	2.52E-05
	g/s	< 3.01E-06		g/s Silver	3.18E-06
Metal collected	Barium	10.8	Metal collected		< 1.9 ND
Metal concentration	ug ug/dscm	4.62E+00	Metal concentration	ug ug/dscm	< 8.29E-01 ND
Wetar concentration	ug/dscm @ 7% O ₂	5.52E+00	Wetar concentration	ug/dscm @ 7% O ₂	< 9.92E-01 ND
Metal emission rate	Ib/h	6.92E-05	Metal emission rate	Ib/h	< 1.24E-05 ND
ivietal elliissioil late	g/s	8.72E-06	Ivietal ellission late	g/s	< 1.57E-06 ND
	Beryllium 9'3	0.72L-00		Thallium	1.37E-00 ND
Metal collected	ug	< 0.4 ND	Metal collected	ug	< 10.7
Metal concentration	ug/dscm	< 1.54E-01 ND	Metal concentration	ug/dscm	< 4.57E+00
motal concentration	ug/dscm @ 7% O ₂	< 1.84E-01 ND	motal concentration	ug/dscm @ 7% O₂	< 5.47E+00
Metal emission rate	lb/h	< 2.31E-06 ND	Metal emission rate	lb/h	< 6.85E-05
motal officolon rate	g/s	< 2.91E-07 ND	motal simbolon rate	q/s	< 8.64E-06
	Cadmium			Vanadium	
Metal collected	ug	9.7	Metal collected	ug	< 2.0
Metal concentration	ug/dscm	4.15E+00	Metal concentration	ug/dscm	< 8.55E-01
	ug/dscm @ 7% O2	4.97E+00		ug/dscm @ 7% O₂	< 1.02E+00
Metal emission rate	lb/h	6.22E-05	Metal emission rate	lb/h	< 1.28E-05
	g/s	7.84E-06		g/s	< 1.61E-06
	Chromium			Zinc	
Metal collected	ug	36.5	Metal collected	ug	133.3
Metal concentration	ug/dscm	1.56E+01	Metal concentration	ug/dscm	5.70E+01
	ug/dscm @ 7% O2	1.87E+01		ug/dscm @ 7% O2	6.82E+01
Metal emission rate	lb/h	2.34E-04	Metal emission rate	lb/h	8.54E-04
	g/s	2.95E-05		g/s	1.08E-04
	Cobalt				
Metal collected	ug	< 1.0 ND			
Metal concentration	ug/dscm	< 4.27E-01 ND			
	ug/dscm @ 7% O₂	< 5.11E-01 ND			
Metal emission rate	lb/h	< 6.40E-06 ND			
Micrai cillission rate	,	< 8.07E-07 ND			
Wetar errission rate	g/s	· 0.01 E 01 110			
Wetai emission rate	G/S Copper	1. 0.0/2 0/ 1/0			
Metal collected		112.4			
	Copper				
Metal collected	Copper ug	112.4			
Metal collected	Copper ug ug/dscm	112.4 4.80E+01			

Note: dscf = Dry standard cubic feet dscfm = Dry standard cubic feet per minute acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 5-1. VOST Audit Sample Results

Compound	Units		Original Audit Samples (No Ice)						udit Samples (lce)
		#1	#2	#3	#4	#5	#6	#1	#2	#3
Acetone	ug	0.31	0.39	0.39	0.26	0.18	ND	0.22 B	0.24 B	0.17 B
Benzene	ug	0.054	0.058	0.057	0.058	0.063	0.059	0.064	0.069	0.068
2-Butanone	ug	0.082 J	0.091 J	0.084 J	0.068 J	0.046 J	ND	0.044 J	0.053 J	ND
Carbon Disulfide	ug	0.015	0.016	0.016	0.016	0.015	0.016	0.017	0.018	0.018
Carbon Tetrachloride	ug	0.041	0.046	0.045	0.046	0.047	0.049	0.049	0.053	0.052
Chlorobenzene	ug	ND	ND	0.0013 J	0.0016 J	0.0029 J	0.0044 J	ND	ND	ND
Chloroform	ug	0.065	0.074	0.069	0.072	0.076	0.074	0.078	0.086	0.089
Methylene Chloride	ug	0.075	0.077	0.072	0.075	0.076	0.075	0.099	0.12	0.12
Tetrachloroethene	ug	0.14	0.16	0.16	0.16	0.14	0.16	0.15	0.15	0.14
Tetrahydrofuran	ug	ND	ND	ND	ND	0.034 J	ND	ND	0.036 J	0.054 J
Toluene	ug	0.0032 J	0.0035 J	0.0033 J	0.0033 J	0.003 J	0.0034 J	0.0036 J	0.0034 J	0.0032 J

Table 6-1. Proposed Operating Parameter Limits

Control Parameters ^a	Anticipated Permit Limit	Comments ^b
GROUP A1 PARAMETERS		
Maximum spent carbon feed rate (lb/hr)	3049	Block hour AWFCO
Minimum afterburner temperature (°F)	1760	Hourly rolling average AWFCO
Maximum hearth #5 temperature (°F)	1650	Hourly rolling average AWFCO
Minimum hearth #5 temperature (°F)	TBD	Hourly rolling average AWFCO
Minimum venturi scrubber pressure differential (in. w.c.)	18	Hourly rolling average AWFCO
Minimum quench/venturi scrubber total liquid flow rate (gpm)	75	Hourly rolling average AWFCO
Minimum packed bed scrubber pH	4.4	Hourly rolling average AWFCO
Minimum packed bed scrubber liquid flow rate (gpm)	63	Hourly rolling average AWFCO
Minimum wet scrubber blowdown flow rate (gpm)	58	Hourly rolling average AWFCO
Minimum WESP secondary voltage (kVDC)	22	Hourly rolling average AWFCO
Maximum stack gas flow rate acfm	9,550	Hourly rolling average AWFCO
GROUP A2 PARAMETERS		
Maximum stack gas carbon monoxide (ppmvd, @7% oxygen) ^c	100	Hourly rolling average AWFCO
GROUP B PARAMETERS		
Allowable hazardous constituents	All except dioxin wastes and TSCA PCBs	Class 1 POHC demonstrated
Maximum total chlorine and chloride feed rate (lb/hr)	60	12-hour rolling average
Maximum mercury feed rate (lb/hr)	1.8E-03	12-hour rolling average
Maximum semivolatile metal (Cd + Pb) feed rate (lb/hr)	1.0E-01	12-hour rolling average
Maximum low volatility metal (As + Be + Cr) feed rate (lb/hr)	1.5E+00	12-hour rolling average
GROUP C PARAMETERS		
Minimum packed bed scrubber pressure differential (in. w.c.)	0.1	Hourly rolling average

(a) Group A1 parameters are continuously monitored and recorded, and are interlocked with the automatic waste feed cutoff system. The values for the Group A1 parameters are based on the performance demonstration test operating conditions.

Group A2 parameters are continuously monitored and recorded, and are interlocked with the automatic waste feed cutoff system. The values for the Group A2 parameters are based on regulatory standards or good operating practice rather than performance demonstration test operating conditions.

Group B parameters are continuously monitored and recorded, but are not interlocked with the automatic waste feed cutoff system. Values for the group B parameters are based on the performance demonstration test operating conditions.

Group C parameters are continuously monitoring and recording, but are not interlocked with the automatic waste feed cutoff system. The values for the Group C parameters are based on manufacturer's specifications and/or operational and safety considerations rather than performance demonstration test operating conditions.

- (b) AWFCO = Automatic waste feed cutoff.
- (c) AWFCO interlock will not be active during the daily CEM calibration period.

Table 6-2. Metals System Removal Efficiency

Run 1

Metal	Feed Rate	Feed Rate	Emission Rate	Emission Rate	SRE (%)
	(lb/hr)	(g/hr)	(lb/hr)	(g/hr)	
Chromium	3.59E-01	1.63E+02	4.79E-04	2.17E-01	99.87%

Run 2

Metal	Feed Rate	Feed Rate	Emission Rate	Emission Rate	SRE (%)
	(lb/hr)	(g/hr)	(lb/hr)	(g/hr)	
Chromium	3.71E-01	1.68E+02	1.30E-04	5.90E-02	99.96%

Run 3

Metal	Feed Rate	Feed Rate	Emission Rate	Emission Rate	SRE (%)
	(lb/hr)	(g/hr)	(lb/hr)	(g/hr)	
Chromium	3.66E-01	1.66E+02	2.34E-04	1.06E-01	99.94%

Westates PDT Report Rev 0.doc

Revision: 0

Date: 06/30/06

Table 7-1. Metals Emission Summary – Run 1

Parameter	Units	Measured Value			
Stack Sa	mpling Parameters				
Net sampling time	minutes	120		Lead	
Stack gas flow rate	dscfm	4,970	Metal collected	ug	356.8
Stack gas now rate	acfm	11,260	Metal concentration	ug/dscm	1.64E+02
	dscm/min	140.75	I Wetar concentration	ug/dscm @ 7% O ₂	2.01E+02
Steels are townsending	oscrivinin °F	176	Matal ausianian vata		3.05E-03
Stack gas temperature		3,582	Metal emission rate	lb/h	3.85E-04
Stack gas velocity	ft/min			g/s	3.00E-U4
Stack gas sample volume	dscf	76.790		Manganese	T
1.12.2	dscm	2.175	Metal collected	ug	65.8
Isokinetic	%	98.2	Metal concentration	ug/dscm	3.03E+01
Stack gas moisture content	vol %	46.2	l	ug/dscm @ 7% O ₂	3.72E+01
Stack gas carbon dioxide content	vol %, dry	6.3	Metal emission rate	lb/h	5.63E-04
Stack gas oxygen content	vol %, dry	9.6		g/s	7.10E-05
	Aluminum			Mercury	
Metal collected	ug	132.3	Metal collected	ug	< 10.8
Metal concentration	ug/dscm	6.08E+01	Metal concentration	ug/dscm	< 4.98E+00
	ug/dscm @ 7% O ₂	7.47E+01		ug/dscm @ 7% O ₂	< 6.11E+00
Metal emission rate	lb/h	1.13E-03	Metal emission rate	lb/h	< 9.26E-05
	g/s	1.43E-04		g/s	< 1.17E-05
	Antimony			Nickel	
Metal collected	ug	< 5.3	Metal collected	ug	12.0
Metal concentration	ug/dscm	< 2.44E+00	Metal concentration	ug/dscm	5.52E+00
	ug/dscm @ 7% O₂	< 2.99E+00		ug/dscm @ 7% O₂	6.78E+00
Metal emission rate	lb/h	< 4.54E-05	Metal emission rate	lb/h	1.03E-04
	q/s	< 5.72E-06		q/s	1.29E-05
	Arsenic			Selenium	
Metal collected	ug	< 5.9	Metal collected	ug	4.5
Metal concentration	ug/dscm	< 2.73E+00	Metal concentration	ug/dscm	2.07E+00
	ug/dscm @ 7% O ₂	< 3.35E+00		ug/dscm @ 7% O ₂	2.54E+00
Metal emission rate	lb/h	< 5.08E-05	Metal emission rate	lb/h	3.85E-05
	g/s	< 6.40E-06		g/s	4.85E-06
	Barium			Silver	
Metal collected	ug	10.2	Metal collected	ug	2.6
Metal concentration	ug/dscm	4.69E+00	Metal concentration	ug/dscm	1.20E+00
	ug/dscm @ 7% O₂	5.76E+00		ug/dscm @ 7% O₂	1.47E+00
Metal emission rate	lb/h	8.73E-05	Metal emission rate	lb/h	2.23E-05
	g/s	1.10E-05		g/s	2.80E-06
	Beryllium			Thallium	
Metal collected	ug	< 0.4	Metal collected	ug	< 11.0
Metal concentration	ug/dscm	< 1.75E-01	Metal concentration	ug/dscm	< 5.06E+00
	ug/dscm @ 7% O ₂	< 2.15E-01		ug/dscm @ 7% O₂	< 6.21E+00
Metal emission rate	lb/h	< 3.25E-06	Metal emission rate	lb/h	< 9.42E-05
	g/s	< 4.10E-07		g/s	< 1.19E-05
	Cadmium			Vanadium	
Metal collected	ug	12.1	Metal collected	ug	< 3.0
Metal concentration	ug/dscm	5.56E+00	Metal concentration	ug/dscm	< 1.38E+00
	ug/dscm @ 7% O ₂	6.83E+00	l	ug/dscm @ 7% O ₂	< 1.69E+00
Metal emission rate	lb/h	1.04E-04	Metal emission rate	lb/h	< 2.57E-05
	g/s	1.31E-05		g/s	< 3.24E-06
	Chromium			Zinc	
Metal collected	ug	56.0	Metal collected	ug	218.4
Metal concentration	ug/dscm	2.58E+01	Metal concentration	ug/dscm	1.00E+02
	ug/dscm @ 7% O ₂	3.16E+01		ug/dscm @ 7% O₂	1.23E+02
Metal emission rate	lb/h	4.79E-04	Metal emission rate	lb/h	1.87E-03
	g/s	6.04E-05		g/s	2.36E-04
	Cobalt				
Metal collected	ug	< 1.1			
Metal concentration	ug/dscm	< 5.15E-01			
	ug/dscm @ 7% O₂	< 6.32E-01			
Metal emission rate	lb/h	< 9.59E-06			
	g/s	< 1.21E-06			
	Copper	:			
Metal collected	ug	167.1			
	ug/dscm	7.68E+01			
Metal concentration					
	ug/dscm @ 7% O₂	9.44E+01			
Metal concentration Metal emission rate					

Note: dscf = Dry standard cubic feet dscfm = Dry standard cubic feet per minute acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-2. Metals Emission Summary – Run 2

Parameter	Units	Measured Value			
Staal: Sa	mpling Parameters				
Net sampling time	mpmy rarameters minutes	120		Lead	
Stack gas flow rate	dscfm	3,860	Metal collected	ug	250.4
Stack gae nen rate	acfm	8,600	Metal concentration	ug/dscm	1.11E+02
	dscm/min	109.32	Wictar Concentration	ug/dscm @ 7% O ₂	1.29E+02
Stack gas temperature	°F	175	Metal emission rate	lb/h	1.61E-03
Stack gas velocity	ft/min	2,736	Wictar Chilosion rate	g/s	2.03E-04
Stack gas sample volume	dscf	79.370		Manganese	2.002.01
Stack gas sample volume	dscm	2.248	Metal collected	ug	42.0
Isokinetic	%	102.9	Metal concentration	ug/dscm	1.87E+01
Stack gas moisture content	vol %	45.1	Wictar concentration	ug/dscm @ 7% O ₂	2.16E+01
Stack gas carbon dioxide content	vol %, dry	7.0	Metal emission rate	lb/h	2.70E-04
Stack gas exygen content	vol %, dry	8.9	Ivietal ellission late	g/s	3.40E-05
	Aluminum	0.3		Mercury	J.40L-03
Metal collected		123.2	Metal collected		< 11.3
	ug			ug	
Metal concentration	ug/dscm	5.48E+01 6.34E+01	Metal concentration	ug/dscm	
Motal amission reta	ug/dscm @ 7% O ₂		Motel emission reta	ug/dscm @ 7% O ₂	
Metal emission rate	lb/h	7.93E-04 9.99E-05	Metal emission rate	lb/h	< 7.26E-05
	g/s	9.99E-05		g/s	< 9.15E-06
Madal adlandari	Antimony	1. 40	Makel cellenter	Nickel	
Metal collected	ug	< 4.8 < 2.14E+00	Metal collected	ug	11.4
Metal concentration	ug/dscm		Metal concentration	ug/dscm	5.07E+00 5.87E+00
Metal emission rate	ug/dscm @ 7% O ₂ lb/h		Metal emission rate	ug/dscm @ 7% O₂ lb/h	
Metal emission rate		< 3.09E-05 < 3.89E-06	Metal emission rate		7.33E-05 9.24E-08
	g/s Arsenic	\ 3.08E-06		g/s Selenium	9.240-00
Metal collected	ug	< 2.7	Metal collected	ug	4.0
Metal concentration	ug/dscm	< 1.21E+00	Metal concentration	ug/dscm	1.78E+00
Wetar concentration	ug/dscm @ 7% O ₂	< 1.41E+00	Wetar concentration	ug/dscm @ 7% O ₂	2.06E+00
Metal emission rate	lb/h	< 1.76E-05	Metal emission rate	lb/h	2.57E-05
metal emission rate	g/s	< 2.21E-06	Wictar Chilocolon rate	g/s	3.24E-08
	Barium			Silver	
Metal collected	ug	9.0	Metal collected	ug	5.7
Metal concentration	ug/dscm	4.00E+00	Metal concentration	ug/dscm	2.54E+00
	ug/dscm @ 7% O ₂	4.63E+00		ug/dscm @ 7% O ₂	2.93E+00
Metal emission rate	lb/h	5.79E-05	Metal emission rate	lb/h	3.67E-05
	g/s	7.30E-06		g/s	4.62E-06
	Beryllium			Thallium	
Metal collected	ug	< 0.4 ND	Metal collected	ug	< 10.6
Metal concentration	ug/dscm	< 1.60E-01 ND	Metal concentration	ug/dscm	< 4.72E+00
	ug/dscm @ 7% O ₂	< 1.85E-01 ND		ug/dscm @ 7% O ₂	< 5.46E+00
Metal emission rate	lb/h	< 2.32E-06 ND	Metal emission rate	lb/h	< 6.82E-05
	g/s	< 2.92E-07 ND		g/s	< 8.59E-08
	Cadmium			Vanadium	
Metal collected	ug	7.9	Metal collected	ug	< 1.6
Metal concentration	ug/dscm	3.51E+00	Metal concentration	ug/dscm	< 7.12E-01
Matal amission vst-	ug/dscm @ 7% O ₂	4.07E+00	Motel emission acts	ug/dscm @ 7% O₂	< 8.24E-01
Metal emission rate	lb/h	5.08E-05 6.40E-06	Metal emission rate	lb/h	< 1.03E-05
	g/s Chromium	0.4UE-Ub		g/s Zinc	_\ 1.3UE-Ub
Metal collected	 	20.2	Metal collected		136.2
Metal concentration	ug ug/dscm	8.99E+00	Metal collected Metal concentration	ug ug/dscm	6.06E+01
wietai CuilceiltiatiUII	ug/dscm @ 7% O ₂	1.04E+01	Meral concellitation	ug/dscm @ 7% O ₂	7.01E+01
Metal emission rate	lb/h	1.30E-04	Metal emission rate	lb/h	8.76E-04
motal cilipaion rate	g/s	1.64E-05	inicial ciliiosiuli late	g/s	1.10E-04
	Cobalt	1.04E-00		1 9/-	1.102-04
Metal collected	ug	< 1.0 ND			
Metal concentration	ug/dscm	< 4.45E-01 ND			
-	ug/dscm @ 7% O ₂	< 5.15E-01 ND			
Metal emission rate	lb/h	< 6.43E-06 ND			
	g/s	< 8.11E-07 ND			
	Copper				
Metal collected	ug	108.1			
Metal concentration	ug/dscm	4.81E+01			
	ug/dscm @ 7% O ₂	5.56E+01			
Metal emission rate	lb/h	6.95E-04			
		0.705.05	1		

8.76E-05

Note: dscf = Dry standard cubic feet dscfm = Dry standard cubic feet per minute acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-3. Metals Emission Summary – Run 3

Parameter	Units	Measured Value			
Stack Sar	npling Parameters				
Net sampling time	minutes	120		Lead	
Stack gas flow rate	dscfm	4,000	Metal collected	ug	694.2
Stack gas now rate	acfm	8,920	Metal concentration	ug/dscm	2.97E+02
-	dscm/min	113.28	Ivietal concentration	ug/dscm @ 7% O2	3.55E+02
Ctaals was taxananatura	°F	175	Matal audicaian vata	ug/ascm @ 7 % ∪2 lb/h	4.45E-03
Stack gas temperature			Metal emission rate		
Stack gas velocity	ft/min	2,838		g/s	5.60E-04
Stack gas sample volume	dscf	82.610		Manganese	T
	dscm	2.340	Metal collected	ug	41.4
Isokinetic	%	103.2	Metal concentration	ug/dscm	1.77E+01
Stack gas moisture content	vol %	45.5		ug/dscm @ 7% O₂	2.12E+01
Stack gas carbon dioxide content	vol %, dry	7.0	Metal emission rate	lb/h	2.65E-04
Stack gas oxygen content	vol %, dry	9.3		g/s	3.34E-05
,	Muminum			Mercury	
Metal collected	ug	125.2	Metal collected	ug	< 14.7
Metal concentration	ug/dscm	5.35E+01	Metal concentration	ug/dscm	< 6.28E+00
	ug/dscm @ 7% O₂	6.40E+01		ug/dscm @ 7% O₂	< 7.52E+00
Metal emission rate	lb/h	8.02E-04	Metal emission rate	lb/h	< 9.42E-05
INICIAL CITIESTOTI TALE	g/s	1.01E-04	Wetar emission rate	g/s	< 1.19E-05
		1.010-04			1.13E-03
	Antimony	1.0	14.1.1.11.11.11	Nickel	
Metal collected	ug	< 4.9	Metal collected	ug	9.4
Metal concentration	ug/dscm	< 2.09E+00	Metal concentration	ug/dscm	4.02E+00
	ug/dscm @ 7% O ₂	< 2.51E+00		ug/dscm @ 7% O ₂	4.81E+00
Metal emission rate	lb/h	< 3.14E-05	Metal emission rate	lb/h	6.02E-05
	g/s	< 3.95E-06		g/s	7.59E-06
	Arsenic			Selenium	
Metal collected	ug	< 3.7	Metal collected	ug	3.9
Metal concentration	ug/dscm	< 1.59E+00	Metal concentration	ug/dscm	1.68E+00
	ug/dscm @ 7% O₂	< 1.91E+00		ug/dscm @ 7% O₂	2.02E+00
Metal emission rate	lb/h	< 2.39E-05	Metal emission rate	lb/h	2.52E-05
	g/s	< 3.01E-06		g/s	3.18E-06
	Barium			Silver	
Metal collected	ug	10.8	Metal collected	ug	< 1.9 ND
Metal concentration	ug/dscm	4.62E+00	Metal concentration	ug/dscm	< 8.29E-01 ND
	ug/dscm @ 7% O₂	5.52E+00		ug/dscm @ 7% O₂	< 9.92E-01 ND
Metal emission rate	lb/h	6.92E-05	Metal emission rate	lb/h	< 1.24E-05 ND
	g/s	8.72E-06		g/s	< 1.57E-06 ND
	Beryllium			Thallium	
Metal collected	ug	< 0.4 ND	Metal collected	ug	< 10.7
Metal concentration	ug/dscm	< 1.54E-01 ND	Metal concentration	ug/dscm	< 4.57E+00
	ug/dscm @ 7% O ₂	< 1.84E-01 ND		ug/dscm @ 7% O ₂	< 5.47E+00
Metal emission rate	lb/h	< 2.31E-06 ND	Metal emission rate	lb/h	< 6.85E-05
	g/s	< 2.91E-07 ND		g/s	< 8.64E-06
	Cadmium			Vanadium	
Metal collected	ug	9.7	Metal collected	ug	< 2.0
Metal concentration	ug/dscm	4.15E+00	Metal concentration	ug/dscm	< 8.55E-01
	ug/dscm @ 7% O ₂	4.97E+00		ug/dscm @ 7% O ₂	< 1.02E+00
Metal emission rate	lb/h	6.22E-05	Metal emission rate	lb/h	< 1.28E-05
	q/s	7.84E-06		g/s	< 1.61E-06
	Chromium 3			Zinc	
Metal collected	ug	36.5	Metal collected	ug	133.3
Metal concentration	uq/dscm	1.56E+01	Metal concentration	ug/dscm	5.70E+01
	ug/dscm @ 7% O ₂	1.87E+01		ug/dscm @ 7% O ₂	6.82E+01
Metal emission rate	lb/h	2.34E-04	Metal emission rate	lb/h	8.54E-04
	g/s	2.95E-05	star orringgion fato	g/s	1.08E-04
	Cobalt	2.00E-00		1 9/-0	1.000-04
Metal collected		< 1.0 ND			
Metal concentration	ug ug/dscm	< 4.27E-01 ND			
metal concentration	ug/dscm @ 7% O ₂	< 5.11E-01 ND			
Motal amission rate					
Metal emission rate	lb/h	< 6.40E-06 ND			
	g/s	< 8.07E-07 ND			
M-1-1II1	Copper	440.4			
Metal collected	ug	112.4			
Metal collected Metal concentration	ug ug/dscm	4.80E+01			
Metal concentration	ug ug/dscm ug/dscm @ 7% O₂	4.80E+01 5.75E+01			
	ug ug/dscm	4.80E+01			

Note: dscf = Dry standard cubic feet dscfm = Dry standard cubic feet per minute acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Performance Demonstration Test Report Siemens Water Technologies Corp. Carbon Reactivation Furnace RF-2 Page 84 of 119

Table 7-4. Mercury Speciation

	Sample results						Speciation Calcu	ulations	
	Vapor Phase Ionic	Particulate Phase	Total Ionic	Elemental	Total Mercury	Vapor phase	Particulate Phase	Total Ionic	Elemental
	Mercury (ug)	Ionic Mercury (ug)	Mercury (ug)	Mercury (ug)	(ug)	Ionic Mercury (%)	Ionic Merciry (%)	Mercury (%)	Mercury (%)
Run 1	1.30	0.06	1.36	9.46	10.82	12.01%	0.55%	12.57%	87.43%
Run 2	1.70	0.06	1.76	9.53	11.29	15.06%	0.53%	15.59%	84.41%
Run 3	4.30	0.06	4.36	10.34	14.70	29.25%	0.41%	29.66%	70.34%
Average	2.43	0.06	2.49	9.78	12.27	19.83%	0.49%	20.32%	79.68%

Vapor Phase Ionic Mercury (Acidified Peroxide Liquid)
Particulate Phase Ionic Mercury (Filter and Front Half Rinse)
Elemental Mercury (Components Downstrean of Peroxide Impinger, includes Permanganate Liquid and Rinse)

Table 7-5. Hexavalent Chromium Emission Summary – Run 1

Parameter	Units	Measured Value
Stack Sar	npling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	5,120
	acfm	11,160
	dscm/min	145.00
Stack gas temperature	°F	176
Stack gas velocity	ft/min	3,552
Stack gas sample volume	dscf	76.040
	dscm	2.153
Isokinetic	%	93.6
Stack gas moisture content	vol %	44.0
Stack gas carbon dioxide content	vol %, dry	6.3
Stack gas oxygen content	vol %, dry	9.6
Hexav	alent chromium	
Metal collected	ug	5.6
Metal concentration	ug/dscm	2.60E+00
	ug/dscm @ 7% O₂	3.19E+00
Metal emission rate	lb/h	4.99E-05
	g/s	6.28E-06

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-6. Hexavalent Chromium Emission Summary – Run 2

Parameter	Units	Measured Value
Stack San	npling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	3,780
	acfm	8,470
	dscm/min	107.05
Stack gas temperature	°F	175
Stack gas velocity	ft/min	2,694
Stack gas sample volume	dscf	75.030
	dscm	2.125
Isokinetic	%	101.1
Stack gas moisture content	vol %	45.3
Stack gas carbon dioxide content	vol %, dry	7.0
Stack gas oxygen content	vol %, dry	8.9
Hexava	alent chromium	
Metal collected	ug	5.9
Metal concentration	ug/dscm	2.78E+00
	ug/dscm @ 7% O₂	3.21E+00
Metal emission rate	lb/h	3.93E-05
Ī	g/s	4.95E-06

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-7. Hexavalent Chromium Emission Summary – Run 3

Parameter	Units	Measured Value
Stack San	npling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	3,890
	acfm	8,770
	dscm/min	110.17
Stack gas temperature	°F	176
Stack gas velocity	ft/min	2,796
Stack gas sample volume	dscf	78.620
	dscm	2.227
Isokinetic	%	103.1
Stack gas moisture content	vol %	46.1
Stack gas carbon dioxide content	vol %, dry	7.0
Stack gas oxygen content	vol %, dry	9.3
Hexava	alent chromium	
Metal collected	ug	7.5
Metal concentration	ug/dscm	3.37E+00
	ug/dscm @ 7% O₂	4.03E+00
Metal emission rate	lb/h	4.91E-05
Ī	g/s	6.18E-06

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-8. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 1

Parameter	Units	Measured Value
Stack Sai	mpling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	5,030
	acfm	11,320
	dscm/min	142.45
Stack gas temperature	°F	175
Stack gas velocity	ft/min	3,606
Stack gas sample volume	dscf	72.660
	dscm	2.058
Isokinetic	%	93.7
Stack gas moisture content	vol %	45.9
Stack gas carbon dioxide content	vol %, dry	6.3
Stack gas oxygen content	vol %, dry	9.6
	hloride and chlorine	
HCI collected	mg	11.8
Cl ₂ collected	mg	1.95
Stack gas HCI concentration	mg/dscm	5.73E+00
	mg/dscm @7% O₂	7.04E+00
Stack gas HCl emission rate	lb/h	1.08E-01
	kg/h	4.90E-02
	g/s	1.36E-02
Stack gas Cl ₂ concentration	mg/dscm	9.48E-01
	mg/dscm @7% O₂	1.16E+00
Stack gas Cl ₂ emission rate	lb/h	1.79E-02
<u> </u>	kg/h	8.10E-03
	g/s	2.25E-03
Stack gas HCI+Cl ₂ concentration	ppmv, dry	4.42E+00
expressed as HCI equivalents	ppmv, dry @7% O₂	5.43E+00
	Particulate	
Particulate matter collected	mg	34.3
Particulate concentration	gr/dscf	7.29E-03
	gr/dscf @ 7% O₂	8.95E-03
	mg/dscm	1.67E+01
	mg/dscm @ 7% O₂	2.05E+01
Particulate emission rate	lb/h	3.14E-01
	kg/h	1.42E-01
	g/s	3.96E-02

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-9. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 2

Parameter	Units	Measured Value
Stack Sar	npling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	3,850
	acfm	8,580
	dscm/min	109.03
Stack gas temperature	°F	174
Stack gas velocity	ft/min	2,730
Stack gas sample volume	dscf	74.990
	dscm	2.124
Isokinetic	%	96.0
Stack gas moisture content	vol %	45.1
Stack gas carbon dioxide content	vol %, dry	7.0
Stack gas oxygen content	vol %, dry	8.9
Hydrogen c	hloride and chlorine	
HCI collected	mg	6.95
Cl ₂ collected	mg	2.01
Stack gas HCI concentration	mg/dscm	3.27E+00
	mg/dscm @7% O₂	3.79E+00
Stack gas HCI emission rate	lb/h	4.72E-02
	kg/h	2.14E-02
	g/s	5.95E-03
Stack gas Cl ₂ concentration	mg/dscm	9.46E-01
	mg/dscm @7% O₂	1.10E+00
Stack gas Cl ₂ emission rate	lb/h	1.37E-02
	kg/h	6.19E-03
	g/s	1.72E-03
Stack gas HCI+Cl2 concentration	ppmv, dry	2.80E+00
expressed as HCI equivalents	ppmv, dry @7% O₂	3.24E+00
	⁾ articulate	
Particulate matter collected	mg	19.4
Particulate concentration	gr/dscf	3.99E-03
	gr/dscf @ 7% O₂	4.62E-03
	mg/dscm	9.13E+00
	mg/dscm @ 7% O₂	1.06E+01
Particulate emission rate	lb/h	1.32E-01
	kg/h	5.98E-02
	g/s	1.66E-02

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-10. Particulate Matter, Hydrogen Chloride, and Chlorine Emissions Summary – Run 3

Parameter	Units	Measured Value
	npling Parameters	
Net sampling time	minutes	120
Stack gas flow rate	dscfm	4,090
	acfm	8,970
	dscm/min	115.83
Stack gas temperature	°F	174
Stack gas velocity	ft/min	2,856
Stack gas sample volume	dscf	79.290
	dscm	2.246
Isokinetic	%	95.7
Stack gas moisture content	vol %	44.8
Stack gas carbon dioxide content	vol %, dry	7.0
Stack gas oxygen content	vol %, dry	9.3
	hloride and chlorine	
HCI collected	mg	6.49
Cl ₂ collected	mg	1.94
Stack gas HCI concentration	mg/dscm	2.89E+00
· · · · · · · · · · · · · · · · · · ·	mg/dscm @7% O₂	3.46E+00
Stack gas HCI emission rate	lb/h	4.43E-02
· · · · · · · · · · · · · · · · · · ·	kg/h	2.01E-02
	g/s	5.58E-03
Stack gas Cl ₂ concentration	mg/dscm	8.64E-01
, , , , , , , , , , , , , , , , , , ,	mg/dscm @7% O₂	1.03E+00
Stack gas Cl ₂ emission rate	lb/h	1.32E-02
, , , , , , , , , , , , , , , , , , ,	kg/h	6.00E-03
Ī	g/s	1.67E-03
Stack gas HCI+Cl ₂ concentration	ppmv, dry	2.49E+00
expressed as HCl equivalents	ppmv, dry @7% O₂	2.98E+00
	articulate	
Particulate matter collected	mg	33.6
Particulate concentration	gr/dscf	6.54E-03
<u> </u>	gr/dscf @ 7% O₂	7.83E-03
<u> </u>	mg/dscm	1.50E+01
<u> </u>	mg/dscm @ 7% O₂	1.79E+01
Particulate emission rate	Ib/h	2.29E-01
	kg/h	1.04E-01
<u> </u>	g/s	2.89E-02

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-11. Particle Size Distribution

Particle Size (um)	Wt%
0.1 - 0.5	6.9
0.5 – 1.0	2.4
1.0 – 5.0	34.8
5.0 – 10.0	17.9
10.0 – 100.0	38.0
>100.0	0.0
Total	100.0

Average particle size distribution. Values calculated as the weighted average of the filter and acetone probe rinse particles for each run.

Westates PDT Report Rev 0.doc

Revision: 0

Date: 06/30/06

Table 7-12. Speciated Volatile Organic Compound Emissions – Run 1

Parameter	Units	Tube Set A	Tube Set B		
Net sampling time	min	40	40	40	40
Corrected sample volume	liters,dry std.	19.6512	19.521	18.9404	18.9631
Corrected sample volume	dscf	0.694	0.689	0.669	0.670
Corrected sample volume	dscm	0.0197	0.0195	0.0189	0.0190
Analyzed (Y/N)	-	N	Υ	Y	Y

Total volume sampled	dscf	2.722
Total volume sampled	dscm	0.0771
Number of tube pairs analyzed	-	3
Total condensate volume	ml	84
Stack gas flow rate	acfm	10,770
Stack gas flow rate	dscfm	4,870

		Ma	ss VOC Compoun	d (ug)					
VOST Compound	Tube Set A	Tube Set B	Tube Set C	Tube Set D	Condensate (ug/L)	Mass VOC Compound (vg)	Stack Conc. (a.c) (ug/dscm)	Mass Emission Rate (a,b,c) (lb/hr)	Mass Emission Rate (a,b,c) (g/s)
Standard Target Analytes									
Acetone	0	< 0.183 J,B	0.55 B	0.554 J,B	4.8 J	< 1.69E+00	< 2.76E+01		
Acrylonitrile	0	< 0.152 ND	< 0.152 ND	< 0.152 ND	< 2.7 ND	< 6.83E-01 ND	< 1.09E+01		
Benzene	0	0.0139 J	0.0552 J < 0.0246	< 0.0064 ND	< 0.1 ND	< 8.39E-02 < 2.63E-01	< 1.42E+00	< 2.60E-05 < 6.85E-05	< 3.27E-06
Bromodichloromethane Bromoform	0	< 0.1366	0.0246 0.115 J	< 0.0032 ND < 0.0145 J	2.2 < 0.14 ND	< 2.63E-01	< 3.75E+00 < 4.79E+00		
Bromomethane	0	< 0.064 J.B	< 0.065 J.B	< 0.052 J,B	< 0.38 ND	< 2.13E-01	< 3.57E+00		
P-Butanone	0	< 0.004 5,0	< 0.003 5,0	< 0.032 3,0	< 0.75 ND	< 2.73E-01 ND	< 4.47E+00		
Carbon Disulfide	n n	0.0091 J	< 0.0087 J	< 0.0028 J	< 0.75 ND	< 2.90E-02	< 4.68E-01	< 8.53E-06	
Carbon Tetrachloride	0	0.0127 J	< 0.0045 J	< 0.0022 ND	< 0.12 ND	< 2.95E-02	< 4.69E-01	< 8.55E-06	< 1.08E-06
Chlorobenzene	0	5.818 E	3.556 E	0.0323 J	< 0.1 ND	< 9.41E+00	< 1.64E+02	< 2.99E-03	< 3.77E-84
Chlorodibromomethane	0	< 0.096	< 0.073	< 0.02 ND	1	< 2.73E-01	< 4.38E+00		
Chloroethane	0	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.24 ND	< 8.02E-02 ND	< 1.31E+00	< 2.38E-05	< 3.00E-06
Chloroform	0	0.023 J	0.0183 J	0.0542 J	6.1	6.08E-01	8.31E+00	1.52E-04	1.91E-06
Chloromethane	0	0.4087 J	< 0.5132	< 0.3032	< 0.12 ND	< 1.24E+00	< 2.15E+01	< 3.92E-04	
Dibromomethane	0	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.21 ND	< 7.76E-02 ND	< 1.27E+00		
Dichlorodifluoromethane	0	< 0.0131 J	< 0.015 J	< 0.195	< 0.15 ND	< 2.36E-01	< 4.05E+00	< 7.39E-05	< 9.31E-06
,1-Dichloroethane	0	< 0.0038 ND	< 0.0038 ND	< 0.0038 ND	< 0.1 ND	< 1.98E-02 ND	< 3.08E-01	< 5.61E-06	< 7.07E-07
,2-Dichloroethane	0	< 0.0044 ND	< 0.0044 ND	< 0.0044 ND	0.14 J	< 2.50E-02	< 3.82E-01	< 6.98E-06	
,1-Dichloroethene	0	< 0.0046 ND	< 0.0046 ND	< 0.0046 ND	< 0.1 ND	< 2.22E-02 ND	< 3.49E-01		
cis-1,2-Dichloroethene	0	< 0.005 ND	< 0.005 ND	< 0.0054 J	< 0.12 ND	< 2.55E-02	< 3.99E-01	< 7.28E-06	< 9.17E-07
rans-1,2-Dichloroethene	0	< 0.0034 ND < 0.0054 ND	< 0.0034 ND < 0.0054 ND	< 0.0034 ND < 0.0054 ND	< 0.1 ND < 0.1 ND	< 1.86E-02 ND < 2.46E-02 ND	< 2.87E-01 < 3.91E-01	< 5.23E-06 < 7.13E-06	< 6.59E-07
,2-Dichloropropane									
is-1,3-Dichloropropene	0	< 0.006 ND < 0.004 ND	< 0.006 ND < 0.004 ND	< 0.006 ND < 0.004 ND	< 0.1 ND < 0.11 ND	< 2.64E-02 ND < 2.12E-02 ND	< 4.22E-01 < 3.29E-01	< 7.71E-06 < 6.00E-06	
rans-1,3-Dichloropropene	0	< 0.004 ND	< 0.004 ND	< 0.004 ND	< 0.11 ND	< 2.12E-02 NU	< 3.29E-01	< 5.61E-06	< 7.56E-07
thylbenzene	0	< 0.0026 ND	< 0.0026 ND	< 0.0062 J	< 0.1 ND	< 1.98E-02	< 1.86E+00		
Hexanone odomethane	0	< 0.0156 J.B	< 0.0166 J.B	< 0.0166 J.B	< 0.12 ND	< 5.89E-02	< 9.81E-01		
Methylene Chloride	0	0.084 J	< 0.039	0.146	2.3	< 4.62E-01	< 7.19E+00	< 1.79E-05	
-Methyl-2-pentanone (MIBK)	0	< 0.047	< 0.028 ND	< 0.028 ND	< 0.4 ND	< 1.37E-01	< 2.23E+00	< 4.07E-05	< 5.13E-06
Nyrene	0	< 0.0034 ND	< 0.0034 ND	< 0.0034 ND	< 0.1 ND	< 1.86E-02 ND	< 2.87E-01	< 5.23E-06	
,1,2,2-Tetrachloroethane	0	< 0.0034 ND	< 0.0034 ND	< 0.022 ND	< 0.15 ND	< 7.86E-02 ND	< 1.31E+00	< 2.40E-05	
etrachloroethene	0	4.733 E	0.696	< 0.008 J	< 0.1 ND	< 5.45E+00	< 9.48E+01	< 1.73E-03	
oluene	0	0.0847 J	0.0936 J	< 0.0302	0.19 J	< 2.24E-01	< 3.84E+00	< 7.00E-05	< 8.82E-06
,1,1-Trichloroethane	0	< 0.0032 ND	< 0.0032 ND	< 0.0032 ND	< 0.1 ND	< 1.80E-02 ND	< 2.76E-01	< 5.04E-06	< 6.35E-07
.1.2-Trichlorgethane	0	< 0.01 ND	< 0.01 ND	< 0.01 ND	< 0.25 ND	< 5.10E-02 ND	< 7.95E-01		
richloroethene	0	0.0231 J	0.02 J	0.043	0.57 J	1.34E-01	2.12E+00	3.87E-05	
richlorofluoromethane	0	< 0.0098 ND	< 0.0098 ND	0.052 J	< 0.12 ND	< 8.17E-02	< 1.38E+00	< 2.51E-05	< 3.17E-06
,2,3-Trichloropropane	0	< 0.0162 ND	< 0.0162 ND	< 0.0162 ND	< 0.36 ND	< 7.88E-02 ND	< 1.24E+00	< 2.26E-05	< 2.85E-06
/inyl Acetate	0	< 0.024 ND	< 0.024 ND	< 0.024 ND	< 0.24 ND	< 9.22E-02 ND	< 1.52E+00	< 2.76E-05	< 3.48E-06
/inyl Chloride	0	< 0.0064 ND	< 0.0064 ND	< 0.0097 J	< 0.24 ND	< 4.27E-02	< 6.53E-01		
(ylenes (total)	0	< 0.0097 J	< 0.0096 ND	< 0.0238 J	< 0.3 ND	< 6.83E-02	< 1.08E+00	< 1.97E-05	< 2.48E-06
pecial Target Analytes									
Bromobenzene	0	< 0.0072 ND	< 0.0072 ND	< 0.0072 ND	< 0.11 ND	< 3.08E-02 ND	< 4.96E-01		
Bromochloromethane	0	< 0.024 ND	< 0.024 ND	< 0.024 ND	< 0.24 ND	< 9.22E-02 ND	< 1.52E+00		
Butylbenzene	0	< 0.0094 ND	< 0.0094 ND	< 0.0094 ND	< 0.1 ND	< 3.66E-02 ND	< 6.00E-01	< 1.09E-05	
ec-Butylbenzene	0	< 0.0072 ND	< 0.0072 ND	< 0.0072 ND	< 0.1 ND	< 3.00E-02 ND	< 4.85E-01	< 8.85E-06	< 1.12E-06
nt-Butylbenzene	0	< 0.008 ND	< 0.006 ND	< 0.008 ND	< 0.24 ND	< 3.82E-02 ND	< 5.75E-01	< 1.05E-05	< 1.32E-06
Chlorotoluene	0	< 0.0046 ND	< 0.0046 ND	< 0.0046 ND	< 0.24 ND	< 3.40E-02 ND	< 5.02E-01	< 9.16E-06	
Chlorotoluene	0	< 0.004 ND < 0.04 ND	< 0.004 ND	< 0.004 ND	< 0.21 ND < 0.45 ND	< 2.96E-02 ND < 1.58E-01 ND	< 4.38E-01	< 7.99E-06	< 1.01E-06
			< 0.04 ND	< 0.04 ND			< 2.58E+00	< 4.71E-05	< 5.93E-08
	0					1.500-01 110			4 2 00F 00
,2-Dibromoethane	0	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.24 ND	< 8.02E-02 ND	< 1.31E+00	< 2.38E-05	
,2-Dibromoethane ,2-Dichlorobenzene	0	< 0.02 ND < 0.006 ND	< 0.02 ND < 0.006 ND	< 0.02 ND < 0.006 ND	< 0.24 ND < 0.1 ND	< 8.02E-02 ND < 2.64E-02 ND	< 4.22E-01	< 2.38E-05 < 7.71E-06	< 9.71E-07
2-Dibromoethane 2-Dichlorobenzene 3-Dichlorobenzene	0 0	< 0.02 ND < 0.006 ND < 0.0062 ND	< 0.02 ND < 0.006 ND < 0.0062 ND	< 0.02 ND < 0.006 ND < 0.0062 ND	< 0.24 ND < 0.1 ND < 0.1 ND	< 8.02E-02 ND < 2.64E-02 ND < 2.70E-02 ND	< 4.22E-01 < 4.33E-01	< 2.38E-05 < 7.71E-06 < 7.90E-06	< 9.71E-0 < 9.95E-0
2-Dibromoethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene	0 0 0	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND	< 0.24 ND < 0.1 ND < 0.1 ND < 0.12 ND	< 8.02E-02 ND < 2.64E-02 ND < 2.70E-02 ND < 3.59E-02 ND	< 4.22E-01 < 4.33E-01 < 5.80E-01	< 2.38E-05 < 7.71E-06 < 7.90E-06 < 1.06E-05	< 9.71E-07 < 9.95E-07 < 1.33E-08
2-Dibromoethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 3-Dichloropopane	0 0 0 0	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND	< 0.24 ND < 0.1 ND < 0.1 ND < 0.12 ND < 0.17 ND	< 8.02E-02 NO < 2.64E-02 NO < 2.70E-02 NO < 3.59E-02 NO < 2.51E-02 NO	< 4.22E-01 < 4.33E-01 < 5.80E-01 < 3.73E-01	< 2.38E-05 < 7.71E-06 < 7.90E-06 < 1.06E-05 < 6.81E-06	< 9.71E-0 < 9.95E-0 < 1.33E-0 < 8.58E-0
2-Dibromoethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 3-Dichloropropane 2-Dichloropropane	0 0 0 0 0	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND	< 0.24 ND < 0.1 ND < 0.1 ND < 0.12 ND < 0.17 ND < 0.11 ND	< 8.02E-02 NO < 2.64E-02 NO < 2.70E-02 NO < 3.59E-02 NO < 2.51E-02 NO < 1.82E-02 NO	< 4.22E-01 < 4.33E-01 < 5.80E-01 < 3.73E-01 < 2.77E-01	< 2.38E-05 < 7.71E-06 < 7.90E-06 < 1.06E-05 < 6.81E-06 < 5.05E-06	< 9.71E-0 < 9.95E-0 < 1.33E-0 < 8.58E-0 < 6.36E-0
2-Ditromoethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 3-Dichloropropane 2-Dichloropropane 1-Dichloropropane	0 0 0 0 0	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0036 ND < 0.0036 ND < 0.003 ND < 0.002 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND < 0.003 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND < 0.002 ND	< 0.24 ND < 0.1 ND < 0.1 ND < 0.12 ND < 0.17 ND < 0.11 ND < 0.11 ND < 0.11 ND	 8.02E-02 ND 2.64E-02 ND 2.70E-02 ND 3.59E-02 ND 2.51E-02 ND 1.82E-02 ND 1.44E-02 ND 	< 4.22E-01 < 4.33E-01 < 5.80E-01 < 3.73E-01 < 2.77E-01 < 2.13E-01	< 2.38E.05 < 7.71E.06 < 7.90E.06 < 1.06E.05 < 6.81E.06 < 5.05E.06 < 3.89E.06	< 9.71E-0 < 9.95E-0 < 1.33E-0 < 8.58E-0 < 6.36E-0 < 4.91E-0
2-Dithromethane 2-Dithromethane 3-Dithlorobenzene 4-Dithlorobenzene 3-Dithloropenzene 3-Dithloropropane 2-Dithloropropane 1-Dithloropropane	0 0 0 0 0	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND < 0.003 ND < 0.002 ND < 0.0096 ND	< 0.24 ND < 0.1 ND < 0.12 ND < 0.12 ND < 0.17 ND < 0.11 ND < 0.11 ND < 0.11 ND < 0.12 ND	< 8.02E-02 NO < 2.64E-02 NO < 2.70E-02 NO < 3.59E-02 NO < 2.51E-02 NO < 1.82E-02 NO	 4.22E-01 4.33E-01 5.80E-01 3.73E-01 2.77E-01 2.13E-01 6.32E-01 	< 2.38E.05 < 7.71E.06 < 7.90E.06 < 1.06E.05 < 6.81E.06 < 5.05E.06 < 3.89E.06 < 1.15E.05	< 9.71E-0 < 9.95E-0 < 1.33E-0 < 8.58E-0 < 6.36E-0 < 4.91E-0 < 1.45E-0
2-Dichromoethane 2-Dichromoethane 3-Dichlorobenzene 4-Dichlorobenzene 3-Dichloropropane 2-Dichloropropane 1-Dichloropropane exachlorobutadiene opropyl benzene	0 0 0 0 0 0 0	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0036 ND < 0.0036 ND < 0.0036 ND < 0.003 ND < 0.002 ND < 0.002 ND < 0.0036 ND < 0.0040 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0036 ND < 0.0036 ND < 0.003 ND < 0.002 ND < 0.002 ND < 0.0096 ND < 0.0096 ND	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0086 ND < 0.0036 ND < 0.003 ND < 0.003 ND < 0.002 ND < 0.0096 ND	< 0.24 ND < 0.1 ND < 0.1 ND < 0.12 ND < 0.17 ND < 0.11 ND < 0.11 ND < 0.11 ND < 0.12 ND	 802E-02 ND 264E-02 ND 270E-02 ND 359E-02 ND 251E-02 ND 1.82E-02 ND 1.44E-02 ND 3.89E-02 ND 2.22E-02 ND 	< 4.22E-01 < 4.33E-01 < 5.80E-01 < 3.73E-01 < 2.77E-01 < 2.13E-01	< 2.38E.05 < 7.71E.06 < 7.90E.06 < 1.06E.05 < 6.81E.06 < 5.05E.06 < 3.89E.06 < 1.15E.05 < 6.37E.06	< 9.71E-00 < 9.95E-00 < 1.33E-00 < 8.58E-00 < 6.36E-00 < 4.91E-00 < 1.45E-00 < 8.03E-00
2-Obermoethane 2-Obermoethane 3-Oberhorobenzene 4-Oberhorobenzene 4-Oberhorobenzene 2-Oberhoropropane 2-Oberhoropropane 1-Oberhoropropane exachlorobutadene goropy/ Denzene	0 0 0 0 0 0 0	< 0.02 NO < 0.006 NO < 0.0062 NO < 0.0086 NO < 0.0086 NO < 0.0036 NO < 0.003 NO < 0.002 NO < 0.0096 NO < 0.0096 NO < 0.0096 NO < 0.0076 NO	 0.02 ND 0.006 ND 0.0060 ND 0.0086 ND 0.0036 ND 0.003 ND 0.002 ND 0.002 ND 0.004 ND 0.007 ND 0.0076 ND 	< 0.02 ND < 0.006 ND < 0.0062 ND < 0.0065 ND < 0.0036 ND < 0.003 ND < 0.002 ND < 0.002 ND < 0.0046 ND < 0.0046 ND < 0.0046 ND	< 0.24 ND < 0.1 ND < 0.1 ND < 0.12 ND < 0.17 ND < 0.11 ND < 0.11 ND < 0.12 ND < 0.11 ND < 0.11 ND < 0.11 ND < 0.12 ND	 8.026-02 ND 2.646-02 ND 2.706-02 ND 3.596-02 ND 2.516-02 ND 1.826-02 ND 1.446-02 ND 3.996-02 ND 2.226-02 ND 3.126-02 ND 3.126-02 ND 	 4.22E.01 4.33E.01 5.80E.01 3.73E.01 2.77E.01 2.13E.01 6.32E.01 3.49E.01 5.06E.01 	< 2.38E.05 < 7.71E.06 < 7.90E.06 < 1.06E.05 < 6.81E.06 < 5.05E.06 < 3.89E.06 < 1.15E.05 < 6.37E.06 < 9.23E.06	 9.71E-00 9.95E-00 1.33E-00 8.58E-00 6.36E-00 4.91E-00 8.03E-00 1.16E-00
2-Obsomoethane 2-Obshorobenzene 3-Obshorobenzene 4-Obshorobenzene 3-Obshorobenzene 3-Obshoropropane 1-Obshoropropane 1-Obshoropropane 1-Obshoropropane 9-Obshoropropane 1-Obshoropropane 1-Obshor	0 0 0 0 0 0 0 0	 0.02 NO 0.006 NO 0.0062 NO 0.0086 ND 0.0086 ND 0.0036 ND 0.0036 ND 0.003 NO 0.002 NO 0.002 NO 0.0046 ND 0.0046 ND 0.0076 ND 0.002 ND 	 0.02 ND 0.006 ND 0.0062 ND 0.0086 ND 0.0086 ND 0.0036 ND 0.003 ND 0.002 ND 0.002 ND 0.0046 ND 0.0046 ND 0.0076 ND 0.002 ND 	 0.02 ND 0.006 ND 0.006 ND 0.006 ND 0.0036 ND 0.0036 ND 0.0038 ND 0.003 ND 0.003 ND 0.004 ND 0.0046 ND 0.0046 ND 0.0046 ND 0.0076 ND 0.0076 ND 	 0.24 ND 0.1 ND 0.12 ND 0.12 ND 0.17 ND 0.11 ND 0.11 ND 0.12 ND 0.1 ND 0.1 ND 0.1 ND 0.1 ND 0.1 ND 0.17 ND 	 8.02E-02 NO 2.64E-02 NO 2.70E-02 NO 3.59E-02 NO 1.82E-02 NO 1.82E-02 NO 1.44E-02 NO 2.22E-02 NO 2.22E-02 NO 3.12E-02 NO 7.53E-02 NO 	 4.22E.01 4.33E.01 5.80E.01 3.73E.01 2.77E.01 2.13E.01 6.32E.01 3.49E.01 5.06E.01 1.25E+00 	 238E-05 7.71E-06 7.90E-06 1.06E-05 6.81E-06 5.05E-06 3.89E-06 1.15E-05 6.37E-06 9.23E-06 2.28E-05 	 9.71E-07 9.95E-07 1.33E-06 8.58E-07 6.36E-07 4.91E-07 1.45E-06 8.03E-07
2-Obermoethane 2-Obermoethane 3-Oberhorobenzene 4-Oberhorobenzene 4-Oberhorobenzene 2-Oberhoropropane 2-Oberhoropropane 1-Oberhoropropane	0 0 0 0 0 0 0	 0.02 NO 0.006 NO 0.0062 NO 0.0062 NO 0.0036 NO 0.0036 NO 0.0036 NO 0.003 NO 0.002 NO 0.002 NO 0.0046 NO 0.0076 NO 0.0076 NO 0.0078 NO 0.0078 NO 0.0058 NO 	 0.02 ND 0.006 ND 0.0062 ND 0.0066 ND 0.0036 ND 0.0036 ND 0.003 ND 0.002 ND 0.002 ND 0.0046 ND 0.0046 ND 0.0076 ND 0.007 ND 0.007 ND 0.005 ND 	 0.02 ND 0.006 ND 0.006 ND 0.0036 ND 0.0036 ND 0.003 ND 0.003 ND 0.003 ND 0.003 ND 0.004 ND 0.005 ND 0.005 ND 0.0046 ND 0.0076 ND 0.0076 ND 0.0076 ND 	 0.24 ND 0.1 ND 0.1 ND 0.12 ND 0.17 ND 0.11 ND 0.11 ND 0.12 ND 0.11 ND 0.11 ND 0.17 ND 0.11 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 	 8.026-02 ND 2.646-02 ND 2.706-02 ND 3.596-02 ND 1.826-02 ND 1.826-02 ND 1.826-02 ND 3.896-02 ND 3.896-02 ND 3.896-02 ND 3.266-02 ND 2.226-02 ND 7.536-02 2.596-02 ND 	 4.22E.01 4.33E.01 5.60E.01 3.73E.01 2.77E.01 2.13E.01 6.32E.01 5.06E.01 1.25E.00 4.12E.01 	 2 38E-05 7 71E-06 7 90E-06 1 06E-05 6 31E-06 3 89E-06 1 15E-05 6 37E-06 9 23E-06 7 52E-06 	 9.71E.0. 9.95E.0. 1.33E.0. 8.58E.0. 6.36E.0. 4.91E.0. 1.45E.0. 8.03E.0. 1.16E.0. 2.87E.0. 9.47E.0.
2-Obsomoethane 2-Obshorobenzene 3-Obshorobenzene 4-Obshorobenzene 3-Obshoropropane 2-Obshoropropane 1-Obshoropropane 1-Obshor	0 0 0 0 0 0 0 0 0 0	 0.02 ND 0.006 ND 0.006 ND 0.0068 ND 0.0036 ND 0.0036 ND 0.0036 ND 0.003 ND 0.002 ND 0.0096 ND 0.0096 ND 0.0096 ND 0.0046 ND 0.0078 ND 0.0058 ND 0.0058 ND 	 0.02 ND 0.006 ND 0.0062 ND 0.0086 ND 0.0036 ND 0.0036 ND 0.003 ND 0.002 ND 0.002 ND 0.0046 ND 0.0076 ND 0.007 ND 0.008 ND 0.007 ND 0.005 ND 0.005 ND 0.002 ND 	 0.02 ND 0.006 ND 0.0062 ND 0.0096 ND 0.0096 ND 0.0036 ND 0.0036 ND 0.003 ND 0.002 ND 0.003 ND 0.0046 ND 0.0076 ND 0.021 J 0.021 J 0.0058 ND 0.0059 ND 0.0092 ND 	 0.24 ND 0.1 ND 0.1 ND 0.12 ND 0.17 ND 0.11 ND 0.11 ND 0.1 ND 0.17 ND 0.1 ND 0.1 ND 0.1 ND 0.11 ND 0.12 ND 	 8.02E-02 NO 2.64E-02 NO 2.64E-02 NO 2.70E-02 NO 3.59E-02 NO 2.51E-02 NO 1.82E-02 NO 1.44E-02 NO 3.89E-02 NO 2.22E-02 NO 3.12E-02 NO 7.53E-02 2.58E-02 NO 1.79E-02 	 4.22E.01 4.33E.01 5.80E.01 3.73E.01 2.77E.01 2.13E.01 6.32E.01 3.49E.01 5.06E.01 1.25E.400 4.12E.01 2.67E.01 	 2 38E-05 7,71E-06 1,90E-05 6,81E-06 5,05E-06 3,89E-06 1,15E-05 6,37E-06 9,23E-06 2,28E-05 7,52E-06 4,88E-06 	 9,71E.0 9,95E.0 1,33E.0 6,58E.0 4,91E.0 1,45E.0 8,03E.0 1,16E.0 2,87E.0 9,47E.0 6,13E.0
2-Obermoethane 2-Obermoethane 3-Oberhorobenzene 3-Oberhorobenzene 4-Oberhorobenzene 3-Oberhoropropane 2-Oberhoropropane 1-Oberhoropropane	0 0 0 0 0 0 0 0 0 0 0	 0.02 ND 0.006 ND 0.006 ND 0.0035 ND 0.0036 ND 0.0036 ND 0.0037 ND 0.0037 ND 0.0038 ND 0.0038 ND 0.0038 ND 0.0038 ND 0.0056 ND 0.0056 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0058 ND 	 0.02 ND 0.006 ND 0.008 ND 0.0086 ND 0.003 ND 0.003 ND 0.004 ND 0.003 ND 0.003 ND 0.003 ND 0.003 ND 0.003 ND 0.005 ND 0.006 ND 0.006 ND 0.007 ND 0.005 ND 	 0.02 ND 0.006 ND 0.006 ND 0.0052 ND 0.0036 ND 0.0036 ND 0.003 ND 0.003 ND 0.002 ND 0.002 ND 0.002 ND 0.0046 ND 0.0076 ND 0.0078 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0059 ND 0.0059 ND 0.0059 ND 0.0059 ND 0.0052 ND 	 0.24 ND 0.1 ND 0.17 ND 0.17 ND 0.17 ND 0.11 ND 0.11 ND 0.12 ND 0.11 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.12 ND 0.12 ND 0.12 ND 	 802E-02 NO 2 64E-02 NO 2 64E-02 NO 2 70E-02 NO 3 59E-02 NO 2 51E-02 NO 1 82E-02 NO 1 84E-02 NO 3 12E-02 NO 2 22E-02 NO 3 12E-02 NO 7 55E-02 7 75E-02 2 58E-02 NO 2 58E-02 NO 2 58E-02 NO 2 78E-02 NO 	 4.226.01 4.336.01 5.806.01 3.736.01 2.776.01 2.136.01 6.326.01 3.496.01 1.256.00 1.256.00 4.126.01 4.726.01 4.726.01 4.726.01 4.726.01 4.726.01 4.726.01 4.726.01 	 2 38E-05 7,71E-06 7,90E-06 1,06E-05 6,81E-06 5,05E-06 3,89E-06 3,7E-06 9,23E-06 2,28E-05 7,52E-06 4,89E-06 8,30E-05 	 9,71E-07 9,95E-07 1,33E-06 8,58E-07 6,36E-07 1,45E-06 8,03E-07 1,16E-06 2,87E-07 9,47E-07 1,05E-05
2-Obtermedhane 2-Dischlorobenzene 3-Dischlorobenzene 4-Dischlorobenzene 4-Dischlorobenzene 3-Dischloropropane 2-Dischloropropane 1-Dischloropropane 1-Dischloropropane 1-Dischloropropane 1-Dischloropropane 1-Dischloropropane 1-Springhloropropane 1-Springhloropropane 1-Springhloropropane 1-Springhloropropane 1-Springhloropropane 1-Springhloropropane 1-Dischloropropane 2-3-Tinchlorobenzene	0 0 0 0 0 0 0 0 0 0 0 0	 0.02 ND 0.006 ND 0.0080 ND 0.0086 ND 0.0086 ND 0.0096 ND 0.0096 ND 0.0096 ND 0.0096 ND 0.0096 ND 0.0096 ND 0.002 ND 0.0028 ND 0.0038 J 0.0028 ND 	 0.02 ND 0.006 ND 0.006 ND 0.0086 ND 0.002 ND 	 0.02 ND 0.006 ND 0.006 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0027 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0028 ND 0.0028 ND 0.0028 ND 	 0.24 ND 0.1 ND 0.12 ND 0.17 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.12 ND 	 8 0026 02 NO 2 645 02 NO 2 705 02 NO 3 595-02 NO 3 595-02 NO 1 825-02 NO 1 445-02 NO 3 895-02 NO 1 385-02 NO 3 895-02 NO 3 125-02 NO 3 125-02 NO 7 555-02 2 295-02 NO 1 795-02 2 795-01 NO 1 035-01 NO 1 035-01 NO 	 4.226.01 4.336.01 5.806.01 3.736.01 2.776.01 2.776.01 6.326.01 5.066.01 1.256.00 4.126.01 2.676.01 4.556.00 1.716.00 	 2 38E-05 7 71E-06 7 90E-06 1 00E-05 6 81E-06 5 05E-06 1 39E-06 1 15E-05 6 37E-06 2 28E-05 7 52E-06 4 80E-06 8 30E-05 3 31E-05 	 9,71E-00 9,95E-00 1,39E-00 1,39E-00 6,36E-00 4,91E-00 1,45E-00 1,45E-00 2,87E-00 9,47E-00 6,13E-00 1,05E-00 3,94E-00 3,94E-00
2-Obermoethane 2-Obermoethane 3-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 3-Dichloropropane 2-Oberhoropropane 1-Dichloropropane 1-Dichloropropane 1-Dichloropropane 1-Dichloropropane 1-Dichloropropane 1-Dichloropropane 1-Inchlorobutadene 1-Inchlorobutadene 1-Inchlorobutadene 1-Inchlorobutadene 1-Inchlorobenzene 1-Inchlorobenzene 2-3-Tinchlorobenzene	0 0 0 0 0 0 0 0 0 0 0	 002 ND 0006 ND 0006 ND 0008 ND 0008 ND 0008 ND 0003 ND 0002 ND 0002 ND 0007 ND 0007 ND 00076 ND 00076 ND 00078 ND 	 0.02 ND 0.006 ND 0.0085 ND 0.0086 ND 0.0098 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0005 ND 0.0008 ND 0.0008 ND 0.0008 ND 0.0008 ND 	 0.02 ND 0.006 ND 0.006 ND 0.002 ND 0.003 ND 0.003 ND 0.003 ND 0.003 ND 0.005 ND 0.002 ND 0.005 ND 0.002 ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.002 ND 0.003 ND 	 0.24 ND 0.1 ND 0.17 ND 0.17 ND 0.17 ND 0.11 ND 0.11 ND 0.12 ND 0.11 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.12 ND 0.12 ND 0.12 ND 	 802E-02 NO 2 64E-02 NO 2 64E-02 NO 2 70E-02 NO 3 59E-02 NO 2 51E-02 NO 1 82E-02 NO 1 84E-02 NO 3 12E-02 NO 2 22E-02 NO 3 12E-02 NO 7 55E-02 7 75E-02 2 58E-02 NO 2 58E-02 NO 2 58E-02 NO 2 78E-02 NO 	 4.226.01 4.336.01 5.806.01 3.736.01 2.776.01 2.136.01 6.326.01 5.066.01 5.066.01 1.256.00 4.126.01 4.556.00 1.716.00 4.776.01 	 2 38E-05 7 71E-06 7 90E-06 1,00E-05 6 81E-06 5,05E-06 3 39E-06 1,15E-05 6 37E-06 9 23E-06 2 28E-05 7 52E-06 4 86E-06 3 31E-05 6 37E-06 	 9,71E.0. 9,95E.0. 9,95E.0. 8,59E.0. 6,36E.0. 4,91E.0. 1,45E.0. 1,16E.0. 2,97E.0. 6,13E.0. 1,05E.0. 1,05E.0. 3,94E.0. 1,10E.0.
2.Obtromo 3.chloropropane 2.Obtromo 4.Dischorobengene 2.Obtrohobengene 3.Obtrhorobengene 3.Obtrhorobengene 3.Obtrhorobengene 3.Obtrhoropropane 1.Obtrhoropropane 2.1.Obtrhoropropane 2.1.Obtrhoropropane 1.Obtrhoropropane 1.Obtrhor	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0.02 NO 0.006 NO 0.006 NO 0.0083 NO 0.0030 NO 0.0038 NO 0.0036 NO 0.0036 NO 0.002 NO 0.002 NO 0.0038 NO 0.0038 NO 0.0038 NO 0.0038 NO 0.0058 NO 	 0.002 ND 0.006 ND 0.0065 ND 0.0066 ND 0.0066 ND 0.0006 ND 0.0007 ND 0.0008 ND 	 0.02 ND 0.006 ND 0.0062 ND 0.0065 ND 0.0065 ND 0.0036 ND 0.0036 ND 0.0036 ND 0.0036 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0027 ND 0.0027 ND 0.0027 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0038 ND 0.0056 ND 	< 0.24 ND < 0.1 ND < 0.1 ND < 0.12 ND < 0.17 ND < 0.12 ND < 0.11 ND < 0.11 ND < 0.11 ND < 0.11 ND < 0.12 ND < 0.11 ND < 0.12 ND < 0.11 ND < 0.12 ND < 0.17 ND	8.03E-02 NO 8.03E-02 NO 2.70E-02 NO 3.99E-02 NO 3.99E-02 NO 4.182E-02 NO 4.182E-02 NO 4.39E-02 NO 5.31E-02 NO 5.31E-02 NO 7.53E-02 5.31E-02 NO 7.53E-02 5.31E-02 NO 7.53E-02 5.31E-02 NO 7.53E-02 5.31E-02 NO 7.31E-02 NO 7.31E-02 NO 7.31E-02 NO 7.31E-02 NO 6.31E-02 NO 7.31E-02 NO 7.3	 4 226-01 4 336-01 5806-01 2 776-01 2 276-01 3 496-01 5 3,496-01 5 6,06-01 1,256-00 4,126-01 2,276-01 4,176-01 4,776-01 4,776-01 3,306-01 	 2 38E-05 7 7 7E-06 7 99E-06 1 06E-05 6 81E-06 5 05E-06 1 15E-05 6 37E-06 1 28E-05 7 52E-06 2 28E-05 7 52E-06 3 30E-05 3 13E-05 8 70E-06 8 70E-06 6 02E-06 	 9,71E-00 9,95E-00 1,33E-00 6,36E-00 4,91E-00 1,45E-00 1,45E-00 2,87E-00 3,94E-00 1,05E-00 1,05E-00 1,10E-00 7,58E-00
2-Obtermeethane 2-Obtermeethane 3-Obtehorobenzene 3-Obtehorobenzene 3-Obtehorobenzene 3-Obtehoropenene 3-Obtehoropenene 3-Obtehoropenene 1-Obtehoropenene 1-Obtehoropenene 1-Obtehoropenene 1-Obtehoropenene 1-Inderloppide	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0.02 ND 0.006 ND 0.006 ND 0.0088 ND 0.0038 ND 	 0.02 ND 0.006 ND 0.008 ND 0.008 ND 0.008 ND 0.008 ND 0.003 ND 0.003 ND 0.003 ND 0.003 ND 0.002 ND 0.005 ND 0.005 ND 0.002 ND 0.005 ND 0.002 ND 0.002 ND 0.005 ND 0.005 ND 0.006 ND 0.006 ND 0.006 ND 0.006 ND 0.006 ND 	 0.02 ND 0.006 ND 0.006 ND 0.0062 ND 0.0068 ND 0.0036 ND 0.0038 ND 0.0038 ND 0.0038 ND 0.0038 ND 0.0026 ND 0.0026 ND 0.0026 ND 0.0006 ND 0.00076 ND 0.0038 ND 0.0036 ND 0.0036 ND 0.0036 ND 	 Q.24 ND 0.1 ND 0.1 ND 0.12 ND 0.12 ND 0.17 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.12 ND 0.12 ND 0.12 ND 0.17 ND 0.17 ND 0.12 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.11 ND 	8.03E-02 NO 8.03E-02 NO 2.66E-02 NO 2.76E-02 NO 3.59E-02 NO 1.46E-02 NO 3.59E-02 NO 1.46E-02 NO 3.39E-02 NO 3.312E-02 NO 3.312E-02 NO 3.312E-02 NO 3.312E-02 NO 3.30E-02 NO	4 226-01 4 336-01 5 806-01 4 37-36-01 4 2176-01 4 126-01 4 3496-01 4 3496-01 4 126-01 4 4126-01 4 456-40 4 176-01 4 4776-01 4 4776-01 4 4776-01 6 216-01	 2 38E-05 7 77E-06 7 90E-06 1 06E-05 6 81E-06 3 89E-06 3 89E-06 9 23E-06 9 23E-06 4 86E-06 4 86E-06 3 30E-05 6 37E-06 1 15E-05 6 02E-06 1 13E-05 	 9,716-03 9,956-03 1,386-03 6,366-03 1,456-03 1,166-03 2,876-03 3,476-03 1,105-03 1,106-03 1,106-03 7,586-03 1,436-03 1,436-03
2-Obtermethane 2-Obtermethane 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichloropropame 2-Dichloropropame 1-Dichloropropame 1-Dichloropropame 1-Dichloropropame 1-Spring planene 1-Spring planene 1-Spring planene 1-Spring planene 1-Spring planene 1-Dichloropropame 1-Dichloropropame 1-Dichloropropame 1-Dichloropropame 1-Dichloropropame 1-Dichloropropame 2-Dichloropropame 1-Dichloropropame 1-Dic	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0.02 NO 0.006 NO 0.006 NO 0.0083 NO 0.0030 NO 0.0038 NO 0.0036 NO 0.0036 NO 0.002 NO 0.002 NO 0.0038 NO 0.0038 NO 0.0038 NO 0.0038 NO 0.0058 NO 	 0.02 ND 0.006 ND 0.008 ND 0.008 ND 0.008 ND 0.008 ND 0.003 ND 0.003 ND 0.003 ND 0.003 ND 0.002 ND 0.005 ND 0.005 ND 0.002 ND 0.005 ND 0.002 ND 0.002 ND 0.005 ND 0.005 ND 0.006 ND 0.006 ND 0.006 ND 0.006 ND 0.006 ND 	 0.02 ND 0.006 ND 0.0062 ND 0.0065 ND 0.0065 ND 0.0036 ND 0.0036 ND 0.003 ND 0.003 ND 0.0026 ND 0.0026 ND 0.0027 ND 0.0027 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0038 ND 0.0038 ND 0.006 ND 0.0068 ND 	< 0.24 ND < 0.1 ND < 0.1 ND < 0.17 ND < 0.17 ND < 0.17 ND < 0.11 ND < 0.17 ND < 0.12 ND < 0.13 ND < 0.13 ND < 0.15 ND < 0.15 ND < 0.15 ND < 0.11 ND	8.03E-02 NO 8.03E-02	4 226-01 4 336-01 5 506-01 3 736-01 4 2776-01 4 2136-01 6 326-01 6 346-01 6 346-01 6 126-01 4 126-01 4 126-01 4 126-01 4 126-01 4 336-01 4 336-01 4 336-01 4 336-01 4 4776-01 6 216-01 6 216-01	 2 38E-05 7 77E-06 7 90E-06 1 06E-05 6 81E-06 3 89E-06 3 89E-06 9 23E-06 9 23E-06 4 86E-06 4 86E-06 3 30E-05 6 37E-06 1 15E-05 6 02E-06 1 13E-05 	 9,716-03 9,956-03 1,386-03 6,366-03 1,456-03 1,166-03 2,876-03 3,476-03 1,105-03 1,106-03 1,106-03 7,586-03 1,436-03 1,436-03
2-Obermoethane 2-Obermoethane 3-Dichlorobenzene 3-Dichlorobenzene 3-Dichloropenzene 3-Dichloropenzene 3-Dichloropenzene 3-Dichloropenzene 1-Dichloropenzene 1-Dichloropenzene 1-Dichloropenzene 1-Dichloropenzene 1-spropyl blubene	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0.02 ND 0.006 ND 0.006 ND 0.0083 ND 0.0083 ND 0.0038 ND 0.0038 ND 0.0038 ND 0.0038 ND 0.0038 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0028 ND 0.0038 ND<td> 0.02 ND 0.006 ND 0.0062 ND 0.0065 ND 0.0068 ND 0.0068 ND 0.003 ND 0.003 ND 0.003 ND 0.002 ND 0.003 ND 0.005 ND 0.005</td><td> 0.02 ND 0.006 ND 0.0052 ND 0.0056 ND 0.0056 ND 0.0036 ND 0.0036 ND 0.0036 ND 0.0036 ND 0.0026 ND 0.0027 ND 0.0028 ND 0.0028 ND 0.0038 ND 0.0036 ND </td><td> Q.24 ND 0.1 ND 0.1 ND 0.12 ND 0.12 ND 0.17 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.12 ND 0.12 ND 0.12 ND 0.17 ND 0.17 ND 0.12 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.11 ND </td><td>8 03E-02 NO 8 03E-02 NO 2 70E-02 NO 3 39E-02 NO 5 31E-02 NO 7 55E-02 7 55E-02 8 28F-01 NO 1 30E-02 NO 1 30E-02 NO 2 39E-03 NO 3 30E-02 NO 4 30E-02 NO 5 30E-02 NO 3 30E-02 NO 5 30E-02 NO</td><td> 4 226-01 4 336-01 5 806-01 4 37-36-01 4 2176-01 4 126-01 4 3496-01 4 3496-01 4 126-01 4 4126-01 4 456-40 4 176-01 4 4776-01 4 4776-01 4 4776-01 6 216-01</td><td> 2.38E.05 7.71E.06 7.79E.06 1.00E.05 1.00E.05 5.05E.06 5.05E.06 3.09E.00 1.15E.05 6.37E.06 9.23E.00 2.28E.05 7.52E.06 8.30E.05 4.80E.06 4.80E.06 6.70E.06 1.13E.05 7.33E.06 1.13E.05 1.33E.05 1.30E.05 </td><td> 9,71E-0; 9,95E-0; 1,33E-0; 8,58E-0; 6,36E-0; 1,45E-0; 1,45E-0; 1,45E-0; 1,16E-0; 9,47E-0; 1,05E-0; 1,05E-0; 1,10E-0; 7,58E-0; 9,23E-0; </td>	 0.02 ND 0.006 ND 0.0062 ND 0.0065 ND 0.0068 ND 0.0068 ND 0.003 ND 0.003 ND 0.003 ND 0.002 ND 0.003 ND 0.005 ND 0.005	 0.02 ND 0.006 ND 0.0052 ND 0.0056 ND 0.0056 ND 0.0036 ND 0.0036 ND 0.0036 ND 0.0036 ND 0.0026 ND 0.0027 ND 0.0028 ND 0.0028 ND 0.0038 ND 0.0036 ND 	 Q.24 ND 0.1 ND 0.1 ND 0.12 ND 0.12 ND 0.17 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.11 ND 0.12 ND 0.12 ND 0.12 ND 0.17 ND 0.17 ND 0.12 ND 0.12 ND 0.15 ND 0.15 ND 0.15 ND 0.11 ND 	8 03E-02 NO 8 03E-02 NO 2 70E-02 NO 3 39E-02 NO 5 31E-02 NO 7 55E-02 7 55E-02 8 28F-01 NO 1 30E-02 NO 1 30E-02 NO 2 39E-03 NO 3 30E-02 NO 4 30E-02 NO 5 30E-02 NO 3 30E-02 NO 5 30E-02 NO	4 226-01 4 336-01 5 806-01 4 37-36-01 4 2176-01 4 126-01 4 3496-01 4 3496-01 4 126-01 4 4126-01 4 456-40 4 176-01 4 4776-01 4 4776-01 4 4776-01 6 216-01	 2.38E.05 7.71E.06 7.79E.06 1.00E.05 1.00E.05 5.05E.06 5.05E.06 3.09E.00 1.15E.05 6.37E.06 9.23E.00 2.28E.05 7.52E.06 8.30E.05 4.80E.06 4.80E.06 6.70E.06 1.13E.05 7.33E.06 1.13E.05 1.33E.05 1.30E.05 	 9,71E-0; 9,95E-0; 1,33E-0; 8,58E-0; 6,36E-0; 1,45E-0; 1,45E-0; 1,45E-0; 1,16E-0; 9,47E-0; 1,05E-0; 1,05E-0; 1,10E-0; 7,58E-0; 9,23E-0;
2-Obsomoethane 2-Obsomoethane 3-Obshirosbenzene 3-Obshirosbenzene 3-Obshirosbenzene 3-Obshirospropame 1-Obshirospropame 2-A-Timshirospropame 2-A-Timshirospropame 3-Firmshirospropame 3-Firmshirosprop	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 < 0.002 ND < 0.006 ND < 0.0062 ND < 0.0065 ND < 0.0036 ND < 0.0005 ND < 0.00076 ND < 0.00076 ND < 0.0008 ND < 0.0008 ND < 0.0038 ND 	 < 0.002 ND < 0.006 ND < 0.0068 ND < 0.0068 ND < 0.0068 ND < 0.0068 ND < 0.0008 ND < 0.0008 ND < 0.002 ND < 0.002 ND < 0.0006 ND < 0.0006 ND < 0.0006 ND < 0.0006 ND < 0.0007 ND < 0.002 ND < 0.0008 ND 	 < 0.002 ND < 0.006 ND < 0.006 ND < 0.0062 ND < 0.0068 ND < 0.0036 ND < 0.0036 ND < 0.0036 ND < 0.003 ND < 0.0026 ND < 0.0026 ND < 0.0026 ND < 0.0026 ND < 0.0006 ND < 0.0007 ND < 0.0028 ND < 0.0028 ND < 0.0028 ND < 0.0038 ND < 0.0036 ND < 0.0056 ND < 0.0044 J 	< 0.24 ND < 0.11 ND < 0.11 ND < 0.12 ND < 0.17 ND < 0.17 ND < 0.11 ND < 0.11 ND < 0.11 ND < 0.12 ND < 0.11 ND < 0.17	6 8 02E-02 NO 6 2 66E-02 NO 6 2 76E-02 NO 6 3 595-02 NO 6 1 58E-02 NO 6 1 58E-02 NO 6 3 595-02 NO 6 3 12E-02 NO 6 3 17E-02 NO 6 1 7 59E-02 NO 6 1 7 59E-02 NO 6 3 17E-02 NO 6 1 75E-02 NO 6 3 10E-02 NO 6 1 75E-02 NO 6 2 22E-02 NO 6 3 10E-02 NO 6 3 10E-02 NO 6 3 10E-02 NO 6 2 25E-02 NO 6 2 51E-02 NO 6 2 51E-02 NO 6 5 15E-02 N	4 226-01 4 336-01 4 336-01 4 3736-01 4 2.776-01 4 2.776-01 4 3.496-01 4 3.496-01 4 1.256-00 4 1.256-00 4 1.776-01 4 4.776-01 4 3.496-01 4 4.776-01 4 4.776-01 4 4.026-01 4 4.026-01	 2.38E.05 7.71E.06 7.79E.06 1.00E.05 1.00E.05 5.05E.06 5.05E.06 3.09E.00 1.15E.05 6.37E.06 9.23E.00 2.28E.05 7.52E.06 8.30E.05 4.80E.06 4.80E.06 6.70E.06 1.13E.05 7.33E.06 1.13E.05 1.33E.05 1.30E.05 	 9.71E-03 9.95E-01 1.33E-04 8.50E-01 6.35E-00 1.45E-06 1.45E-06 2.87E-00 1.16E-00 1.05E-05 3.94E-00 1.10E-08 3.94E-00 1.10E-08 3.94E-00 1.10E-08 3.94E-00 1.10E-08 1.10E-08<
2-Observomethane 2-Observomethane 3-Observomene 3-Observomene 3-Observomene 3-Observomene 3-Observomene 3-Observomene 3-Observomene 3-Observomene 3-Observomene 1-Observomene 1-Observomene 1-Observomene 1-Observomene 1-Opservomene 1-Opservomene 1-Opservomene 1-Opservomene 1-Opservomene 1-Opservomene 2-Observomene 1-Opservomene 1-Opservom	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 < 0.002 ND < 0.006 ND < 0.0062 ND < 0.0065 ND < 0.0036 ND < 0.0005 ND < 0.00076 ND < 0.00076 ND < 0.0008 ND < 0.0008 ND < 0.0038 ND 	 < 0.002 ND < 0.006 ND < 0.0068 ND < 0.0068 ND < 0.0068 ND < 0.0068 ND < 0.0008 ND < 0.0008 ND < 0.002 ND < 0.002 ND < 0.0006 ND < 0.0006 ND < 0.0006 ND < 0.0006 ND < 0.0007 ND < 0.002 ND < 0.0008 ND 	 < 0.002 ND < 0.006 ND < 0.006 ND < 0.0062 ND < 0.0068 ND < 0.0036 ND < 0.0036 ND < 0.0036 ND < 0.003 ND < 0.0026 ND < 0.0026 ND < 0.0026 ND < 0.0026 ND < 0.0006 ND < 0.0007 ND < 0.0028 ND < 0.0028 ND < 0.0028 ND < 0.0038 ND < 0.0036 ND < 0.0056 ND < 0.0044 J 	< 0.24 ND < 0.11 ND < 0.11 ND < 0.12 ND < 0.17 ND < 0.17 ND < 0.11 ND < 0.11 ND < 0.11 ND < 0.12 ND < 0.11 ND < 0.17	6 8 02E-02 NO 6 2 66E-02 NO 6 2 76E-02 NO 6 3 595-02 NO 6 1 58E-02 NO 6 1 58E-02 NO 6 3 595-02 NO 6 3 12E-02 NO 6 3 17E-02 NO 6 1 7 59E-02 NO 6 3 17E-02 NO 6 1 7 59E-02 NO 6 3 10E-02 NO 6 1 7 59E-02 NO 6 2 22E-02 NO 6 3 10E-02 NO 6 3 10E-02 NO 6 2 55E-02 NO 6 5 5E-02 NO 6	4 226-01 4 336-01 4 336-01 4 3736-01 4 2.776-01 4 2.776-01 4 3.496-01 4 3.496-01 4 1.256-00 4 1.256-00 4 1.776-01 4 4.776-01 4 3.496-01 4 4.776-01 4 4.776-01 4 4.026-01 4 4.026-01	 2.38E.05 7.71E.06 7.79E.06 1.00E.05 1.00E.05 5.05E.06 5.05E.06 3.09E.00 1.15E.05 6.37E.06 9.23E.00 2.28E.05 7.52E.06 8.30E.05 4.80E.06 4.80E.06 6.70E.06 1.13E.05 7.33E.06 1.13E.05 1.33E.05 1.30E.05 	 9.71E-03 9.95E-01 1.33E-04 8.50E-01 6.35E-00 1.45E-06 1.45E-06 2.87E-00 1.16E-00 1.05E-05 3.94E-00 1.10E-08 3.94E-00 1.10E-08 3.94E-00 1.10E-08 3.94E-00 1.10E-08 1.10E-08<

(a) Stack gas sample volume (analyzed tubes only) 2.0277 dry std cubic feet

(b) Stack gas flow rate

10770 actual cubic feet per minute 5.08355 actual cubic meters per second 4870 dry std cubic feet per minute 2.29869 dry std cubic meters per second

Table 7-13. Speciated Volatile Organic Compound Emissions – Run 2

Parameter	Units	Tube Set A	Tube Set B	Tube Set C	Tube Set D
Net sampling time	min	40	40	40	40
Corrected sample volume	liters,dry std.	19.453	20.2233	19.3709	19.3709
Corrected sample volume	dscf	0.687	0.714	0.684	0.684
Corrected sample volume	dscm	0.0195	0.0202	0.0194	0.0194
Analyzed (Y/N)		N	Y	Y	Y

Total volume sampled	dscf	2.769
Total volume sampled	dscm	0.0784
Number of tube pairs analyzed	,	3
Total condensate volume	ml	84
Stack gas flow rate	acfm	8,580
Stack gas flow rate	dscfm	3,880

Vost			Mar	ss VOC Compoun	d (ug)						
Accession		Tube Set A	Tube Set B	Tube Set C	Tube Set D		Compound	Conc. (a,c)	Emission Rate (a,b,c)	Mass Emission Rate (a,b,c) (g/s)	
Arripotentire 0											
Benezone 0										6.21E-05	
Boundamentarian										< 1.95E-05	
December 0											
Semontentheme											
September 0											
Carbon Develoption 0											
Curbon Froetherder 0											
Chebelensementaries	Carbon Tetrachloride									< 7.82E-0	
Charlestementaries										< 1.33E-04	
Commendation			< 0.13	< 0.106	0.131 J						
College	Chloroethane	0					< 8.02E-02 ND				
College											
Disponsimenthame											
Diebloordingscomenhame	Dibromomethane	0	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.21 ND	< 7.76E-02 ND	< 1.24E+00	< 1.81E-05	< 2.28E-06	
1,10,000entenhane			< 0.023 J	< 0.0113 J				< 9.97E-01		< 1.83E-08	
1,2 Chichocenthanee		0	< 0.0038 ND	< 0.0038 ND	< 0.0038 ND		< 1.98E-02 ND	< 3.00E-01	< 4.37E-06		
1.10c/chosentenee		0	< 0.0044 ND	< 0.0044 ND	< 0.0044 ND	0.12 J	< 2.33E-02	< 3.52E-01	< 5.12E-06	< 6.45E-02	
Color A Color	1,1-Dichloroethene	0	< 0.0046 ND	< 0.0046 ND	< 0.0046 ND	< 0.1 ND	< 2.22E-02 ND	< 3.41E-01	< 4.96E-06	< 6.25E-03	
Trans-1_2Dichloropename			< 0.005 ND		< 0.005 ND			< 3.83E-01	< 5.57E-06		
1,20-Ch-Orographene		0									
1.1. 1.1.											
Campain Dischleroproperse D C 0.004 ND C 0.004 ND C 0.014 ND C 2.12E-0.07 ND C 3.21E-0.01 C 4.67E-0.05	cis-1,3-Dichloropropene									< 7.55E-02	
Ethybancame 0	trans-1.3-Dichloropropene									< 5.88E-07	
2-Hexanone	Ethylbenzene				< 0.0026 ND					< 4.38E-07	
Oddersthane	2-Hexanone	0	< 0.0198 ND	< 0.0198 ND		< 0.76 ND		< 1.82E+00	< 2.65E-05	< 3.34E-06	
Methylanc Chornede		0								< 1.72E-08	
Methyl-)						1.1 J				< 5.61E-06	
Syrene							< 1.18E-01 ND	< 1.85E+00	< 2.69E-05		
1,1,2,1 Tetrachtoresthane											
International contents 0											
Tolumen										< 1.46E-05	
1,1,1-inchloroethane										< 6.89E-06	
1,1,2-Tinchloroprimen										< 4.94E-07	
Tinchforesthemen										< 1.42E-06	
Time Nording Compendance										< 1.57E-06	
1,2,3 Tinchivopropane										< 1.15E-06	
\(\sqr\) (inj) Accepte \(0 \) < 0.024 ND \(0 \) < 0.024 ND \(0 \) < 0.024 ND \(0 \) < 0.24 ND \(0 \) < 0.34 ND \(< 2.22E-06	
Virgit Chiefords										< 2.71E-06	
Sylenes O C 0.002 N C 0.003 N C 0.003 N C 0.004 N C 0.005 N											
Special Target Analyses										< 1.64E-06	
Biomochloramene											
Demonshare		Û	< 0.0072 ND	< 0.0072 ND	< 0.0072 ND	< 0.11 ND	< 3.08E-02 ND	< 4.84E-01	< 7.04E-06	< 8.87E-07	
o	Bromochloromethane			< 0.024 ND							
Ass. Buty bear and a common											
Each-Burythenzene											
Chlorotoblane											
AC-horothune											
12-Distromestation											
12-Dichromeshane										< 4.61E-06	
1.2-Dichloroperaree	1.2-Dibromoethane										
3.5 1.5	1.2-Dichlorobenzene										
										< 7.74E-07	
3-Dichloropropame										< 1.04E-06	
2,2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-										< 6.69E-0	
Hearchinorbutadeine											
Suprogry Denzere											
Plagographilutume 0 0.00076 ND 0.000776 ND 0.0007776 ND 0.										< 6.25E-0	
Appthwhere										< 9.04E-03	
ProgyPlentEnter 0 < 0.0058 ND < 0.005										< 2.45E-0	
1,1,2 Tetrachirorethame										< 7.37E-0	
Februhardouran										< 4.22E-07	
2.3 Tinchlosobenzene										< 8.13E-06	
2,4 Trichlotobenzene											
1,2 Trichton-1,2 Influororthane											
1,24Trimethylbenzene							< 2.17E.02 ND				
3,5-finienthylbenzene	1.2.4.Trimethylhenzene							< 0.00E-01		< 5.90E-0/	
m-&p-Xylene	2.5.Trimathylbenzene										
o-Xylene 0 < 0.0034 ND < 0.0034 ND < 0.0034 ND < 0.014 ND < 0.14 ND < 2.20E-02 ND < 3.23E-01 < 4.69E-06 < 5	m. 2 n-Yulana										
			- 0.0034 ND	- UJUJA ND	- 0.0004 ND	- 0.14 HD	- 2.200-02 ND	3.232-01	- 4.002-00	- U.U1E-U	
Senzidehyde 0 0 0.0,04 NJ 0 0 4,00E-02 6,78E-01 9,86E-06 1			0	0.04 811	0	n	4.00E.02	6.78E 01	9.866.00	1.24E-08	

(a) Stack gas sample volume 2.0021 dry std cubic feet 0.05897 dry std cubic meters

8580 actual cubic feet per minute 4.04984 actual cubic meters per second 3880 dry std cubic feet per minute 1.8314 dry std cubic meters per second

Table 7-14. Speciated Volatile Organic Compound Emissions – Run 3

Parameter				Tube Set C	
Net sampling time	min	40	40	40	40
Corrected sample volume	liters,dry std.	20.1214	18.4533	18.3004	18.4533
Corrected sample volume	dscf	0.711	0.652	0.646	0.652
Corrected sample volume	dscm	0.0201	0.0185	0.0183	0.0188
Analyzed (Y/N)		Y	Y	Y	Y

Total volume sampled	dscf	2.660
Total volume sampled	dscm	0.0753
Number of tube pairs analyzed		4
Total condensate volume	ml	84
Stack gas flow rate	acfm	8,850
Stack gas flow rate	dscfm	4,080

			ss VOC Compoun						
VOST Compound	Tube Set A	Tube Set B	Tuhe Set C	Tube Set D	Condensate (ug/L)	Mass VOC Compound (ug)	Stack Conc. (a,c) (ug/dscm)	Mass Emission Rate (a,b,c) (lb/hr)	Mass Emission Rate (a,b,t (g/s)
Standard Target Analytes									
Acetone	< 0.245	0.56 B	0.64 B	0.458 J,B	5.9 J	< 2.40E+00	< 3.18E+01	< 4.87E-04	< 6.13E
Acrylonitrile	< 0.152 ND	< 0.152 ND	< 0.152 ND < 0.0086 J	< 0.152 ND < 0.0101 J	< 2.7 ND	< 8.35E-01 ND < 5.21E-02	< 1.11E+01		
Benzene Bromodichloromethane	0.0135 J < 0.0396	< 0.0115 J < 0.0426	< 0.0086 J < 0.0376	< 0.0101 J < 0.0416	< 0.1 ND < 0.1 ND	< 5.21E-02 < 1.70E-01	< 6.92E-01 < 2.25E+00	< 1.06E-05 < 3.45E-05	< 1.33E4
Bromoform	< 0.1268	< 0.1666	< 0.0576	< 0.0416	< 0.14 ND	< 5.98E-01	< 7.94E+00		
Bromomethane	< 0.044 ND	< 0.047 J,B	< 0.048 J,B	< 0.049 J,B	< 0.38 ND	< 2.20E-01	< 2.92E+00		
2-Butanone	< 0.07 ND	< 0.07 ND	< 0.07 ND	< 0.07 ND	< 0.75 ND	< 3.43E-01 ND	< 4.55E+00		
Carbon Disulfide	0.0124.1	0.0151 .1	0.0128 .1	0.0187 .1	< 0.1 ND	< 6.74E-02	< 8.95F-01		
Carbon Tetrachloride	< 0.0049 J	< 0.005 J	< 0.0842 J	< 0.0048 J	< 0.12 ND	< 2.90E-02	< 3.85E-01	< 5.88E-06	< 7.41E4
Chlorobenzene	2.349 E	3.409 E,J	3.1048 E,J	1.4077 J	< 0.1 ND	< 1.03E+01	< 1.36E+02	< 2.09E-03	< 2.63E4
Chlorodibromomethane	< 0.11	< 0.13	< 0.11	0.121 J	< 0.2 ND	< 4.88E-01	< 6.48E+00		
Chloroethane	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.24 ND	< 1.00E-01 ND	< 1.33E+00		
Chloroform	< 0.0289	< 0.0299	0.0244 J	< 0.0269	< 0.1 ND	< 1.19E-01	< 1.57E+00		< 3.03E4
Chloromethane	< 0.2532	< 0.0862	< 0.0242 J	< 0.0542	< 0.12 ND	< 4.28E-01	< 5.68E+00	< 8.68E-05	< 1.09E-
Dibromomethane	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.21 ND	< 9.76E-02 ND	< 1.30E+00		
Dichlorodifluoromethane	< 0.0127 J < 0.0038 ND	< 0.0126 J < 0.0038 ND	< 0.0114 J < 0.0038 ND	< 0.0149 J < 0.0038 ND	< 0.15 ND < 0.1 ND	< 6.42E-02 < 2.36E-02 ND	< 8.52E-01 < 3.13E-01	< 1.30E-05 < 4.79E-06	< 1.64E-
1,1-Dichloroethane 1,2-Dichloroethane	< 0.0038 ND < 0.0044 ND	< 0.0038 ND	< 0.0038 ND < 0.0044 ND	< 0.0038 ND < 0.0044 ND	< U.1 NU 0.11 J	< 2.36E-02 NO < 2.68E-02	< 3.13E-01 < 3.56E-01		
1,1-Dichloroethene	< 0.0044 ND	< 0.0044 ND	< 0.0044 ND	< 0.0044 ND	< 0.11 J	< 2.68E-02 ND	< 3.56E-01	< 5.45E-06	
cis-1,2-Dichloroethene	< 0.0046 ND	< 0.0046 ND	< 0.0046 ND	< 0.0046 ND	< 0.12 ND	< 3.01E-02 ND	< 3.99E-01	< 6.10E-06	< 7.69E
rans-1,2-Dichloroethene	< 0.0034 ND	< 0.0034 ND	< 0.0034 ND	< 0.0034 ND	< 0.1 ND	< 2.20E-02 ND	< 2.92E-01	< 4.46E-06	
1,2-Dichloropropane	< 0.0054 ND	< 0.0054 ND	< 0.0054 ND	< 0.0054 ND	< 0.1 ND	< 3.00E-02 ND	< 3.98E-01	< 6.09E-06	< 7.67E-
cis-1,3-Dichloropropene	< 0.006 ND	< 0.006 ND	< 0.006 ND	< 0.006 ND	< 0.1 ND	< 3.24E-02 ND	< 4.30E-01	< 6.57E-06	< 8.28E-
rans-1,3-Dichloropropene	< 0.004 ND	< 0.004 ND	< 0.004 ND	< 0.004 ND	< 0.11 ND	< 2.52E-02 ND	< 3.35E-01	< 5.12E-06	< 6.45E-
Ethylbenzene	< 0.0031 J	< 0.0026 ND	< 0.0026 ND	< 0.0026 ND	< 0.1 ND	< 1.93E-02	< 2.56E-01		< 4.93E4
2-Hexanone	< 0.0198 ND	< 0.0198 ND	< 0.0198 ND	< 0.0198 ND	< 0.76 ND	< 1.43E-01 ND	< 1.90E+00	< 2.90E-05	< 3.66E-
odomethane	< 0.0032 ND	< 0.0156 J,B	< 0.0156 J,B	< 0.0156 J,B	0.56 J,B	< 9.70E-02	< 1.29E+00		
Methylene Chloride	0.183 J	0.48	0.161	0.295	1.2 J	1.22E+00	1.62E+01	2.47E-04	
4-Methyl-2-pentanone (MIBK)	< 0.028 ND	< 0.028 ND	< 0.028 ND	< 0.028 ND	< 0.4 ND	< 1.46E-01 ND	< 1.93E+00	< 2.95E-05	< 3.72E-
Styrene	< 0.0034 ND	< 0.0034 ND	< 0.0034 ND	< 0.0034 ND	< 0.1 ND	< 2.20E-02 ND	< 2.92E-01	< 4.46E-06	< 5.62E4
1,1,2,2-Tetrachloroethane	< 0.022 ND	< 0.022 ND	< 0.022 ND	< 0.022 ND	< 0.15 ND	< 1.01E-01 ND	< 1.34E+00		< 2.57E-
Tetrachloroethene Toluene	0.2332 J 0.072 J	< 2.4021 E 0.3743 J	1.1097 J 0.1233 J	0.3624 J 0.1925 J	< 0.1 ND 0.12 J	< 4.12E+00 7.72E-01	< 5.46E+01 1.03E+01	< 8.35E-04 1.57E-04	< 1.05E-4
1,1,1-Trichloroethane	< 0.0032 ND	< 0.0032 ND	< 0.0032 ND	< 0.0032 ND	< 0.123	< 2.12E-02 ND	< 2.81E-01		
1.1.2-Trichloroethane	< 0.0032 ND	< 0.0032 ND	< 0.0032 ND	< 0.0032 ND	< 0.25 ND	< 6.10E-02 ND	< 8.10E-01	< 1.24E-05	
Trichloroethene	0.0189 J	0.0217 J	< 0.0122 J	< 0.0117 J	< 0.1 ND	< 7.29E-02	< 9.68E-01		
Trichlorofluoromethane	< 0.0098 ND	< 0.0098 ND	< 0.0098 ND	< 0.0098 ND	< 0.12 ND	< 4.93E-02 ND	< 6.54E-01		
1,2,3-Trichloropropane	< 0.0162 ND	< 0.0162 ND	< 0.0162 ND	< 0.0162 ND	< 0.36 ND	< 9.50E-02 ND	< 1.26E+00	< 1.93E-05	< 2.43E4
Vinyl Acetate	< 0.024 ND	< 0.024 ND	< 0.024 ND	< 0.024 ND	< 0.24 ND	< 1.16E-01 ND	< 1.54E+00		< 2.97E4
Vinyl Chloride	< 0.0064 ND	< 0.0064 ND	< 0.0064 ND	< 0.0064 ND	< 0.24 ND	< 4.58E-02 ND	< 6.07E-01		
Xylenes (total)	< 0.0148 J	< 0.0113 J	< 0.0109 J	< 0.0097 J	< 0.3 ND	< 7.19E-02	< 9.54E-01	< 1.46E-05	< 1.84E4
Special Target Analytes									
Bromobenzene	< 0.0072 ND	< 0.0072 ND	< 0.0072 ND	< 0.0072 ND	< 0.11 ND	< 3.80E-02 ND	< 5.05E-01		
Bromochloromethane	< 0.024 ND	< 0.024 ND	< 0.024 ND	< 0.024 ND	< 0.24 ND	< 1.16E-01 ND	< 1.54E+00		
n-Butylbenzene	< 0.0094 ND < 0.0072 ND	< 0.1 ND < 0.1 ND	< 4.60E-02 ND	< 6.11E-01 < 4.94E-01	< 9.33E-06	< 1.18E-			
sec-Butylbenzene		< 0.0072 ND < 0.006 ND	< 0.0072 ND < 0.006 ND	< 0.0072 ND < 0.006 ND	< 0.1 ND	< 3.72E-02 ND		< 7.55E-06	
tert-Butylbenzene 2-Chlorotoluene	< 0.008 ND < 0.0046 ND	< 0.0046 ND	< 0.006 ND	< 0.0046 ND	< 0.24 ND	< 4.42E-02 ND < 3.86E-02 ND	< 5.88E-01 < 5.12E-01	< 8.98E-06 < 7.82E-06	< 1.13E4
4-Chlorotoluene	< 0.0048 ND	< 0.004 ND	< 0.004 ND	< 0.004 ND	< 0.21 ND	< 3.36E-02 ND	< 4.47E-01		
1,2-Dibromo-3-chloropropane	< 0.04 ND	< 0.04 ND	< 0.04 ND	< 0.04 ND	< 0.45 ND	< 1.98E-01 ND	< 2.63E+00		
1,2-Dibromoethane	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.02 ND	< 0.24 ND	< 1.00E-01 ND	< 1.33E+00	< 2.03E-05	< 2.56E-
1,2-Dichlorobenzene	< 0.006 ND	< 0.006 ND	< 0.006 ND	< 0.006 ND	< 0.1 ND	< 3.24E-02 ND	< 4.30E-01	< 6.57E-06	
,3-Dichlorobenzene	< 0.0062 ND	< 0.0062 ND	< 0.0062 ND	< 0.0062 ND	< 0.1 ND	< 3.32E-02 ND	< 4.41E-01	< 6.74E-06	< 8.49E-
1,4-Dichlorobenzene	< 0.0086 ND	< 0.0086 ND	< 0.0086 ND	< 0.0086 ND	< 0.12 ND	< 4.45E-02 ND	< 5.90E-01	< 9.03E-06	< 1.14E-
1,3-Dichloropropane	< 0.0036 ND	< 0.0036 ND	< 0.0036 ND	< 0.0036 ND	< 0.17 ND	< 2.87E-02 ND	< 3.81E-01		
2,2-Dichloropropane	< 0.003 ND	< 0.003 ND	< 0.003 ND	< 0.003 ND	< 0.11 ND	< 2.12E-02 ND	< 2.82E-01		
1,1-Dichloropropene	< 0.002 ND	< 0.002 ND	< 0.002 ND	< 0.002 ND	< 0.1 ND	< 1.64E-02 ND	< 2.18E-01		
Hexachlorobutadiene	< 0.0096 ND	< 0.0096 ND	< 0.0096 ND	< 0.0096 ND	< 0.12 ND	< 4.85E-02 ND	< 6.44E-01		
sopropyl benzene	< 0.0046 ND < 0.0076 ND	< 0.1 ND	< 2.68E-02 ND < 3.88E-02 ND	< 3.56E-01 < 5.15E-01	< 5.44E-06 < 7.87E-06	< 6.85E-			
o-Isopropyltoluene	- 0.0010 110								
Naphthalene n-Propylbenzene	< 0.02 ND < 0.0058 ND	< 0.043 < 0.0068 ND	< 0.17 < 0.0058 ND	< 0.079 < 0.0058 ND	< 0.17 ND < 0.1 ND	< 3.26E-01 < 3.16E-02 ND	< 4.33E+00 < 4.19E-01	< 6.62E-05 < 6.41E-06	
1,1,1,2-Tetrachloroethane	< 0.008 ND	< 0.002 ND	< 0.0056 ND	< 0.002 ND	< 0.11 ND	< 1.81E-02 ND	< 2.40E-01	< 3.67E-06	
Tetrahydrofuran	< 0.062 ND	< 0.062 ND	< 0.062 ND	< 0.062 ND	< 1.2 ND	< 3.49E-01 ND	< 4.63E+00	< 7.08E-05	< 8.92E
1,2,3-Trichlorobenzene	< 0.028 ND	< 0.028 ND	< 0.028 ND	< 0.028 ND	< 0.23 ND	< 1.31E-01 ND	< 1.74E+00		
,2,4-Trichlorobenzene	< 0.006 ND	< 0.006 ND	< 0.006 ND	< 0.006 ND	< 0.15 ND	< 3.66E-02 ND	< 4.86E-01		
,1,2-Trichloro-1,2,2-trifluoroethane	< 0.0036 ND	< 0.0036 ND	< 0.0036 ND	< 0.0036 ND	< 0.13 ND	< 2.53E-02 ND	< 3.36E-01	< 5.14E-06	< 6.47E-
1,2,4-Trimethylbenzene	< 0.0096 ND	< 0.0096 ND	< 0.0096 ND	< 0.0096 ND	< 0.11 ND	< 4.76E-02 ND	< 6.32E-01	< 9.67E-06	< 1.22E-
1,3,5-Trimethylbenzene	< 0.0056 ND	< 0.0056 ND	< 0.0056 ND	< 0.0056 ND	< 0.1 ND	< 3.08E-02 ND	< 4.09E-01		
m- & p-Xylene	< 0.0125 J	< 0.0099 J	< 0.0095 J	< 0.0083 J	< 0.2 ND	< 5.70E-02	< 7.57E-01	< 1.16E-05	< 1.46E-
>-Xylene	< 0.0034 ND	< 0.0034 ND	< 0.0034 ND	< 0.0034 ND	< 0.14 ND	< 2.54E-02 ND	< 3.37E-01	< 5.15E-06	< 6.48E4
	TICs)								
			0	0	0	6.00E-02	7.96E-01	1.22E-05	1.53E4
Tentatively Identified Compounds (Nonane Benzaldehyde	0.06 NJ	0.074 NJ	0.063 NJ	0.041 NJ	0	1.78E-01	2.36E+00	3.61E-05	4.55E-0

(b) Stack gas flow rate

8850 actual cubic feet per minute 4.17729 actual cubic meters per second 4080 dry std cubic feet per minute 1.9258 dry std cubic meters per second

Table 7-15. Speciated Semivolatile Organic Compound Emissions – Run 1

Semivolatile Compound	Front Half Analytical Result (ug/sample)	Back Half Analytical Result (ug/sample)	Condensate Analytical Result (ug/sample)	Stack (a,b,c) Concentration (ug/dscm)	Emission Rate (g/s)
Standard Target Analytes	0.5 NO	0.5 NO	1040		. 1000 00
Acenaphthene Acenaphthylene	0.5 ND 0.5 ND	0.5 ND	1.8 ND 1.5 ND		< 1.85E-06 < 1.65E-06
Benzyl alcohol	35 ND	0.5 ND 35 ND	1.5 ND 1.8 ND		< 1.65E-06 < 4.74E-05
Bis(2-chloroethoxy) methane Bis-(2-chloroethyl) ether	0.59 ND 0.76 ND	0.5 ND 0.56 ND	1.8 ND 1.5 ND		< 1.91E-06 < 1.86E-06
Bis(2-ethylhexyl) phthalate	5.7 J	10 ND	18 J	< 9.68E+00	< 2.22E-05
4-Bromophenyl-phenyl ether	0.53 ND	0.5 ND	1.3 ND	< 6.69E-01	< 1.54E-06
Butylbenzylphthalate 4-Chloroaniline	1.1 ND 1.2 ND	0.61 ND 6 ND	2.1 ND 7.3 ND		< 2.51E-06 < 9.57E-06
4-Chloro-3-methylphenol	1 ND	0.62 ND	6 ND	< 2.19E+00	< 5.03E-06
2-Chloronaphthalene	0.5 ND	0.5 ND	1.3 ND		< 1.52E-06
2-Chlorophenol 4-Chlorophenyl-phenyl ether	0.98 ND 0.51 ND	0.5 ND 0.5 ND	1.5 ND 2.9 ND		< 1.97E-06 < 2.58E-06
Dibenzofuran	0.53 ND	0.5 ND	2.7 ND		< 2.46E-06
Di-n-butylphthalate	0.71 ND	10 ND	2.1 ND		< 8.45E-06
1,2-Dichlorobenzene 1,3-Dichlorobenzene	0.84 ND 1.2 ND	0.51 ND 0.57 ND	1.6 ND 1.3 ND		< 1.95E-06 < 2.03E-06
1,4-Dichlorobenzene	1.1 ND	0.53 ND	1.9 ND	< 1.01E+00	< 2.33E-06
3,3°-Dichlorobenzidine	2.7 ND	7.4 ND	7.1 ND		< 1.14E-05 < 2.71E-06
2,4-Dichlorophenol Diethyl phthalate	1.5 ND 1.5 ND	0.5 ND 0.73 ND	2.1 ND 1.3 ND		< 2.71E-06 < 2.33E-06
2,4-Dimethylphenol	2.9 ND	6.3 ND	1.4 ND		< 7.00E-06
Dimethylphthalate	0.63 ND	0.5 ND	1.2 ND 1.3 ND		< 1.54E-06
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	5 ND 5.9 ND	8.7 ND	1.3 ND 3.7 ND		< 9.90E-06 < 2.09E-05
2,4-Dinitrophenol 2,4-Dinitrotoluene	1.6 ND	22 ND 0.5 ND	2.5 ND		< 3.04E-06
2,6-Dinitrotoluene	1.3 ND	0.5 ND	1.9 ND	< 1.06E+00	< 2.44E-06
Di-n-octyl phthalate Hexachlorobenzene	2.1 ND 0.56 ND	0.56 ND	2.3 ND 2.4 ND		< 3.27E-06 < 2.28E-06
Hexachlorobutadiene	1.4 ND	0.74 ND	1.8 ND	< 1.13E+00	< 2.60E-06
Hexachlorocyclo-pentadiene	10 ND	10 ND	6 ND	< 7.46E+00	< 1.72E-06
Hexachloroethane Isophrone	2.5 ND 0.66 ND	0.54 ND 0.5 ND	1.8 ND 1.6 ND		< 3.19E-06 < 1.82E-06
2-Methylphenol	2.3 ND	3 ND	1.9 ND		< 4.75E-06
2-Nitroaniline	0.56 ND	0.5 ND	2.6 ND	< 1.05E+00	< 2.42E-06
3-Nitroaniline 4-Nitroaniline	3.8 ND 2.3 ND	2 ND 2 ND	4.3 ND 3.5 ND		< 6.67E-06 < 5.15E-06
Nitrobenzene		0.5 ND	1.5 ND		< 1.80E-06
2-Nitrophenol	0.73 ND 3.2 ND	0.5 ND	2.4 ND	< 1.75E+00	< 4.03E-06
4-Nitrophenol	3.3 ND 0.6 ND	3.3 ND	3.5 ND 1.3 ND		< 6.67E-06
N-Nitrosodiphenylamine N-Nitroso-di-n-propylamine	0.73 ND	0.87 ND	2.1 ND		< 1.83E-06 < 2.20E-06
N-Nitroso-di-n-propylamine 2,2'-oxybis (1-Chloropropane)	1 ND	0.5 ND 0.76 ND	1.6 ND	< 9.65E-01	< 2.22E-06
Pentachlorophenol	25 ND	25 ND	3.2 ND		< 3.51E-05
Phenol 1,2,4-Trichlorobenzene	1.1 ND 0.73 ND	0.9 ND 0.59 ND	2 ND 2 ND	11100.00	< 2.64E-06 < 2.19E-06
2,4,5-Trichlorophenol	2.3 ND	1.3 ND	2 ND	< 1.61E+00	< 3.70E-06
2.4.6-Trichlorophenol	1.4 ND	0.75 ND	2.3 ND	< 1.28E+00	< 2.94E-06
Special Target Analytes Acetophenone	0.77 ND	3.9 J	2.4 ND	< 2.03E+00	< 4.67E-06
Aniline	0.95 ND	7.0 ND	17 ND	< 7.25E+00	< 1.67E-05
Anthracene Benzaldehyde	0.51 ND 2.6 ND	0.5 ND 6.4 J	1.5 ND 2 ND		< 1.66E-06 < 7.26E-06
Benzidine	51 ND	51 ND	60 ND		< 1.07E-04
Benzo(a)anthracene	0.82 ND	0.58 ND	1.6 ND	< 8.61E-01	< 1.98E-06
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.4 ND 2.1 ND	1.1 ND 1.6 ND	3.9 ND 2.7 ND		< 4.22E-06 < 4.22E-06
Benzoic acid	42 ND	46 ND	8.7 ND		< 6.38E-06
Benzonitrile	2.4 ND	1.7 ND	2.4 ND		< 4.29E-06
Benzo(ghi)perylene Benzo(a)pyrene	2.8 ND 1 ND	0.62 ND 0.5 ND	2 ND 1.6 ND		< 3.58E-06 < 2.05E-06
Carbazole	0.76 ND	0.64 ND	2 ND		< 2.24E-06
Chrysene	0.88 ND	0.64 ND	1.2 ND		< 1.80E-06
Dibenz(ah)anthracene	2 ND 0.59 ND	0.6 ND 0.52 ND	2.6 ND 2.7 ND		< 3.43E-06 < 2.51E-06
1,3-Dinitrobenzene Diphenylamine	0.5 ND	0.52 ND	2.7 ND		< 2.44E-06
1,2-Diphenylhydrazine	0.63 ND	0.5 ND	1.3 ND	< 6.98E-01	< 1.60E-06
Fluoranthene	0.5 ND	0.5 ND	1.6 ND		< 1.72E-06
Fluorene Indeno(1,2,3-cd)pyrene	0.51 ND 2.1 ND	0.5 ND 0.54 ND	2.5 ND 2.1 ND		< 2.32E-06 < 3.13E-06
2-Methylnaphthalene	0.56 ND	0.5 ND	2.1 ND	< 9.07E-01	< 2.09E-06
3 & 4-Methylphenol	2.3 ND 0.5 ND	2 ND 0.6 ND	2 ND 1.6 ND		< 4.16E-06
Naphthalene N-Nitrosodimethylamine	0.5 ND 0.72 ND	0.6 ND	1.6 NU 2 NO		< 1.78E-06 < 2.13E-06
Pentachlorobenzene	0.52 ND 0.76 ND	0.5 ND	2.1 ND	< 8.96E-01	< 2.06E-06
Pentachloronitrobenzene		0.5 ND	2.4 ND		< 2.42E-06
Phenanthrene		0.5 ND	1.7 ND		< 1.79E-06 < 1.70E-06
Pyrene	0.51 ND	0.53 ND	1.3 ND		1.102.00
Pyrene Pyridine	0.74 ND 0.89 ND	0.53 ND 0.74 ND	1.3 ND 4.9 ND	< 1.87E+00	< 4.31E-06
Pyridine 1,2,4,5-Tetrachlorobenzene	0.74 ND 0.89 ND 0.87 ND	0.53 ND		< 1.87E+00	< 4.31E-06 < 2.22E-06
Pyrene Pyridine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compound	0.74 ND 0.89 ND 0.87 ND	0.53 ND 0.74 ND 0.5 ND	4.9 NO 2 NO	< 1.87E+00 < 9.68E-01	< 2.22E-06 2.14E-04
Pyrene Pyndine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compound 3-Penten-2-one, 4-methyl- Unknown Q 5254)	0.74 ND 0.89 ND 0.87 ND ds 95 NJ 4.5 NJ	0.53 ND 0.74 ND 0.5 ND	4.9 NO 2 NO 230 NJ 40 NJ	< 1.87E+00 < 9.68E-01 9.33E+01 1.28E+01	2.22E-06 2.14E-04 2.94E-05
Pyrene Pyridine 1,2,4,5-fetrachlorobenzene Tentatively Identified Compound 3-Penten-2-one, 4-methyl- Unknown (2,5254) Unknown (2,7017)	0.74 ND 0.89 ND 0.87 ND ds 95 NJ 4.5 NJ 7.4 NJ	0.53 NO 0.74 NO 0.5 NO 0 0	4.9 ND 2 ND 230 NJ 40 NJ 0	< 1.87E+00 < 9.68E-01 9.33E+01 1.28E+01 2.12E+00	2.22E-06 2.14E-04 2.94E-05 4.88E-06
Pyrene Pyrodine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compound 3-Penten-2-one, 4-methyl- Unknown (2,5254) Unknown (2,7017) Unknown (2,7428)	0.74 ND 0.89 ND 0.87 ND 4.5 NJ 7.4 NJ 52 NJ	0.53 NO 0.74 NO 0.5 NO 0 0 0	4.9 ND 2 ND 230 NJ 40 NJ 0	< 1.87E+00 < 9.68E-01 9.33E+01 1.28E+01 2.12E+00 1.49E+01	2.22E-06 2.14E-04 2.94E-05 4.88E-06 3.43E-05
Pyrene Pyndine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compoune 3-Penten-2-one, 4-methyl- Unknown (2,5254) Unknown (2,7017) Unknown (2,7428) Unknown (2,9132)	0.74 ND 0.89 ND 0.87 ND ds 95 NJ 4.5 NJ 7.4 NJ	0.53 NO 0.74 NO 0.5 NO 0 0	4.9 ND 2 ND 230 NJ 40 NJ 0	< 1.87E+00 < 9.68E-01 9.33E+01 1.26E+01 2.12E+00 1.49E+01 1.52E+00 2.01E+01	2.22E-06 2.14E-04 2.94E-05 4.88E-06
Pyrene Pyridine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compoune 3-Penten-2-one, 4-methyl- Unknown (2,525d) Unknown (2,7207) Unknown (2,7426) Unknown (2,7426) Unknown (2,7426) Unknown (2,7494) Toluene	0.74 ND 0.89 ND 0.87 ND 45 NJ 4.5 NJ 7.4 NJ 5.2 NJ 5.3 NJ 0	0.53 ND 0.74 ND 0.5 ND 0.5 ND 0 0 0 0 0 0 70 NJ 26 NJ	4.9 NO 2 NO 2 NO 230 NJ 40 NJ 0 0 0 0	< 1.87E+00 < 9.68E-01 9.33E+01 1.20E+01 2.12E+00 1.49E+01 1.52E+00 2.01E+01 7.46E+00	2.14E-04 2.94E-05 4.88E-06 3.43E-05 3.50E-06 4.62E-05 1.72E-05
Pytone Pyrdine 1,2,4,5-Tetrachlorobenzere Tentatively Identified Compound 3-Penten-2-one, 4-methyl- Unknown (2,554) Unknown (2,7017) Unknown (2,72429) Unknown (2,1429) Unknown (2,1494) Toluene Methane, dibrormochloro-	0.74 ND 0.89 ND 0.87 ND 1s 95 NJ 4.5 NJ 7.4 NJ 5.2 NJ 5.3 NJ 0 0	0.53 ND 0.74 NO 0.5 ND 0.5 ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.9 NO 2 NO 230 NJ 40 NJ 0 0 0 0 0	< 1.87E+00 < 9.68E-01 9.33E+01 1.26E+01 2.12E+00 1.49E+01 1.52E+00 2.01E+01 7.46E+00 2.78E+00	2.14E-04 2.94E-05 4.88E-06 3.43E-05 3.50E-06 4.62E-05 1.72E-05 6.40E-06
Pyrane Pyranine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compoune 3-Penten-2-one, 4-methyl- Unknown (2,525d) Unknown (2,7217) Unknown (2,7426) Unknown (2,7426) Unknown (2,1494) Toluene Methane, dibromochloro- Totrachloroothylene	0.74 ND 0.89 ND 0.87 ND 45 NJ 4.5 NJ 7.4 NJ 5.2 NJ 5.3 NJ 0	0.53 ND 0.74 ND 0.5 ND 0.5 ND 0 0 0 0 0 0 70 NJ 26 NJ	4.9 NO 2 NO 2 NO 230 NJ 40 NJ 0 0 0 0	< 1.87E+00 < 9.68E-01 9.33E+01 1.20E+01 2.12E+00 1.49E+01 1.52E+00 2.01E+01 7.46E+00	2.14E-04 2.94E-05 4.88E-06 3.43E-05 3.50E-06 4.62E-05 1.72E-05
Pyrene Pyridine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compount 3-Penten-2-one, 4-methyl- Unknown (2,526) Unknown (2,727) Unknown (2,7426) Unknown (2,7426) Unknown (2,1494) Toluene Methane, dibromochloro- Totrachlorosthylene Unknown (2,018) Unknown (2,018) Unknown (2,018)	0.74 ND 0.89 ND 0.87 ND 95 NJ 4.5 NJ 5.2 NJ 5.3 NJ 0 0 0 0 0 0	0.53 NO 0.74 NO 0.5 NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.9 NO 2 NO 230 NJ 40 NJ 0 0 0 0 0 0 0	< 1.87E+00 9.88E-01 9.33E+01 1.29E+01 2.12E+00 1.49E+01 1.52E+00 2.01E+01 7.46E+00 2.15E+01 1.18E+00 2.27E+01 1.18E+00 2.27E+00	2 22E-06 2 14E-04 2 94E-05 4 88E-06 3 48E-05 3 50E-06 4 62E-05 1 72E-05 6 40E-06 4 96E-06 2 71E-06 6 14E-06
Pyrene Pyridine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compount 3-Penten-2-one, 4-methyl- Unknown (2,526) Unknown (2,727) Unknown (2,7426) Unknown (2,7426) Unknown (2,1494) Toluene Methane, dibromochloro- Totrachlorosthylene Unknown (2,018) Unknown (2,018) Unknown (2,018)	0.74 ND 0.89 ND 0.87 ND 45 NJ 45 NJ 52 NJ 53 NJ 0 0 0 0 0 0	0.53 ND 0.74 NO 0.5 ND 0 0 0 0 0 0 0 0 0 0 0 0 0	4.9 NO 2 NO 200 NJ 40 NJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	< 1.87E+00 9.88E-01 9.33E+01 1.29E+01 2.12E+00 1.49E+01 1.52E+00 2.01E+01 7.46E+00 2.15E+01 1.18E+00 2.27E+01 1.18E+00 2.27E+00	2 22E-06 2.14E-04 2.94E-05 4.88E-06 3.49E-05 3.50E-06 4.62E-05 1.72E-05 6.40E-06 2.71E-06 6.14E-06 2.77E-06
Pyrene Pyrndine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compoun 3-Penten-2-one, 4-methyl- Unknown (2,7615) Unknown (2,7617) Unknown (2,7428) Unknown (2,7428) Unknown (2,7428) Unknown (2,7428) Unknown (2,1694) Toluene Methane, dibromochloro- Totuene Unknown (2,6018) Unknown (2,6018) Unknown (2,6018) Unknown (2,6018) Unknown (2,77811)	0.74 ND 0.89 ND 0.87 ND 95 NJ 4.5 NJ 5.2 NJ 5.3 NJ 0 0 0 0 0 0	0.53 ND 0.74 ND 0.5 ND 0 0 0 0 0 0 0 0 0 0 0 0 0	4.9 NO 2 NO 230 NJ 40 NJ 0 0 0 0 0 0 0	< 1.87E+00 < 9.68E-01 9.33E+01 1.26E+01 2.12E+00 1.49E+01 1.52E+00 2.01E+01 7.46E+00 2.15E+01 1.18E+00 2.15E+01 1.18E+00 1.21E+01 5.71E+01 5.71E+02	2 22E-06 2 14E-04 2 94E-05 4 88E-06 3 39E-05 3 50E-06 4 62E-05 6 40E-06 4 96E-06 2 71E-06 6 14E-06 2 77E-06 1 31E-03
Pyrane Pyranine 1,2,4,5-Tetrachlorobenzene 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compounc 3-Penten-2-one, 4-methyl- Unknown (2,554) Unknown (2,7017) Unknown (2,7129) Hegtane, 2,5-dimethyl- Unknown (2,7129) Benzene, chloro- Methane, informo-	074 ND 089 ND 089 ND 087 ND 45 ND 45 ND 74 ND 53 NJ 0 0 0 0 0 0 0 0	0.53 NO 0.74 NO 0.5 NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 NJ 26 NJ 75 NJ 75 NJ 75 NJ 75 NJ 75 NJ 75 NJ 75 NJ 76 NJ 78 NJ	4.9 NO 2 NO 2 NO 200 NJ 40 NJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	< 187E+00 < 9.88E-01 1.26E+01 1.26E+01 1.26E+01 1.52E+00 1.52E+00 2.01E+01 7.46E+00 2.15E+01 1.18E+00 2.67E+00 1.21E+01 1.21E+01 2.27E+00 1.21E+02 2.27E+00	2 22E 06 2 14E 04 2 94E 05 4 88E 06 3 49E 05 3 50E 06 4 62E 05 1 72E 06 6 40E 06 4 95E 05 1 14E 00 2 77E 06 1 31E 00 2 77E 04 6 60E 06
Pyrene Pyridine 1,2,4,5-Tetrachlorobenzene 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compound 3-Penten-2-one, 4-methyl- Unknown (2,554) Unknown (2,7017) Unknown (2,72428) Unknown (2,1932) Unknown (2,1932) Unknown (2,1934) Toluene Methane, dibromochloro- Tetrachloroethylene Unknown (2,6018) Unknown (2,6018) Unknown (2,6018) Unknown (2,7611) Benzene, chloro- Methane, tribromo- Benzadehylek, 4-ethyl-	074 ND 089 ND 087 ND ts 95 NJ 74 NJ 75 NJ 53 NJ 0 0 0 0 0 0 0 0 0 0 0	0.53 NO 0.74 NO 0.5 NO 0 0 0 0 0 0 0 0 0 70 NJ 26 NJ 9.7 NJ 9.7 NJ 18 NJ 9.3 NJ 18 NJ 590 NJ 10 NJ 10 NJ 59 NJ	4.9 NO 2 NO 2 NO 2 NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	< 187±40 9.33±40 1.26E40 1.26E40 1.26E40 1.46E40 1.52E40 2.21E40 2.21E40 2.21E40 2.21E40 1.46E40 2.21E40 1.52E40 2.21E40 1.21E40 2.78E40 2.27E40 2.27E40 1.21E40 5.71E40 2.27E40 1.21E40 2.27E40 1.21E40 1.22E40 1.	2 22E-06 2 14E-04 2 94E-05 4 88E-06 3 43E-05 3 50E-06 4 02E-05 1 72E-05 6 40E-06 2 71E-06 2 77E-05 1 31E-03 2 77E-04 6 60E-06 3 88E-06
Pyrene Pyrndine 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compounc 3-Penten-2-one, 4-methyl- Unknown (2,554) Unknown (2,7017) Unknown (2,7017) Unknown (2,7428) Unknown (2,9132) Unknown (2,9132) Unknown (2,0132) Unknown (2,0132) Unknown (2,0132) Unknown (2,0131) Unknown (2,0131) Unknown (2,0131) Unknown (2,0131) Unknown (2,0131) Unknown (2,0131) Benzene, chloro- Methane, thoromo- Benzaldehyde, 4-ethyl- Benzeled, P. P. Prisphen	074 ND 089 ND 089 ND 087 ND 45 ND 74 ND 75 ND 55 NJ 52 NJ 53 NJ 0 0 0 0 0 0 0 0	0.53 NO 0.74 NO 0.5 NO 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 NO 2 NO 2 NO 40 NJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	K 187E+00 9.30E-01 1.20E+01 1.20E+01 1.20E+01 1.52E+00 1.52E+00 2.01E-01 7.46E+00 2.16E+01 2.16E+01 1.16E+02 2.67E+00 2.67E+00 2.67E+00 2.78E+01 1.18E+02 2.67E+00 1.21E+01 5.71E+02 1.20E+01 1.80E+00 1.80E+00 1.80E+00 1.80E+00	2 22E-06 2 14E-04 2 94E-05 4 88E-06 3 49E-05 3 50E-06 4 62E-05 6 40E-66 4 95E-05 6 14E-05 2 77E-04 1 31E-03 2 77E-04 6 50E-06 3 89E-06 3 89E-06
Pyrene Pyridine 1,2,4,5-Tetrachlorobenzene 1,2,4,5-Tetrachlorobenzene Tentatively Identified Compound 3-Penten-2-one, 4-methyl- Unknown (2,554) Unknown (2,7017) Unknown (2,72428) Unknown (2,1932) Unknown (2,1932) Unknown (2,1934) Toluene Methane, dibromochloro- Tetrachloroethylene Unknown (2,6018) Unknown (2,6018) Unknown (2,6018) Unknown (2,7611) Benzene, chloro- Methane, tribromo- Benzadehylek, 4-ethyl-	074 ND 089 ND 087 ND ts 95 NJ 74 NJ 75 NJ 53 NJ 0 0 0 0 0 0 0 0 0 0 0	0.53 NO 0.74 NO 0.5 NO 0 0 0 0 0 0 0 0 0 70 NJ 26 NJ 9.7 NJ 9.7 NJ 18 NJ 9.3 NJ 18 NJ 590 NJ 10 NJ 10 NJ 59 NJ	4.9 NO 2 NO 2 NO 2 NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	< 187±40 9.33±40 1.26E40 1.26E40 1.26E40 1.46E40 1.52E40 2.21E40 2.21E40 2.21E40 2.21E40 1.46E40 2.21E40 1.52E40 2.21E40 1.21E40 2.78E40 2.27E40 2.27E40 1.21E40 5.71E40 2.27E40 1.21E40 2.27E40 1.21E40 1.22E40 1.	2 22E-06 2 14E-04 2 94E-05 4 88E-06 3 43E-05 3 50E-06 4 02E-05 1 72E-05 6 40E-06 2 71E-06 2 77E-05 1 31E-03 2 77E-04 6 60E-06 3 88E-06

NOTE: All concentrations in this table are uncorrected for oxygen concentration.

122-990 dry standard cubic feet
3.48 dry standard cubic feet
4.870 dry standard cubic feet per minute
2.30 dry standard cubic feet per minute
2.30 dry standard cubic feet per minute
3.30 dry standard cubic feet per minute
3.30 dry standard cubic meters per second

Table 7-16. Speciated Semivolatile Organic Compound Emissions – Run 2

Semivolatile Compound	Front Half Analytical Result (ug/sample)	Back Half Analytical Result (ug/sample)	Condensate Analytical Result (ug/sample)	Stack (a,b,c) Concentration (ug/dscm)	Emission Rate (g/s)
Standard Target Analytes	0.6 NO	0.6 NO	1.7 NO	L 911E01	- 1.40E.00
Acenaphthene Acenaphthylene	0.5 ND 0.5 ND	0.5 ND 0.5 ND	1.7 ND 1.4 ND	< 8.11E-01 < 7.21E-01	< 1.49E-06 < 1.32E-06
Benzyl alcohol	35 ND	35 ND	1.7 ND	< 2.15E+01	< 3.94E-05
Bis(2-chloroethoxy) methane Bis-(2-chloroethyl) ether	0.59 ND 0.76 ND	0.5 ND	1.7 ND 1.4 ND	< 8.38E-01 < 8.17E-01	< 1.53E-06 < 1.50E-06
Bis(2-ethylhexyl) phthalate	3.3 ND	10 ND	29	< 1.27E+01	< 2.33E-05
4-Bromophenyl-phenyl ether	0.53 ND	0.5 ND	1.2 ND	< 6.70E-01	< 1.23E-06
Butylbenzylphthalate 4-Chloroaniline	1.1 ND 1.2 ND	0.61 ND 6 ND	1.9 ND 6.8 ND	< 1.08E+00 < 4.21E+00	< 1.99E-06 < 7.70E-06
4-Chloro-3-methylphenol	1 ND	0.62 ND	5.6 ND	< 2.17E+00	< 3.97E-06
2-Chloronaphthalene	0.5 ND	0.5 ND	1.2 ND	< 6.61E-01	< 1.21E-06
2-Chlorophenol 4-Chlorophenyl-phenyl ether	0.98 ND 0.51 ND	0.5 ND 0.5 ND	1.4 ND 2.7 ND	< 8.65E-01 < 1.11E+00	< 1.58E-06 < 2.04E-06
Dibenzofuran	0.53 ND	0.5 ND	2.5 ND	< 1.06E+00	< 1.94E-06
Di-n-butylphthalate	0.71 ND	10 ND 0.51 ND	1.9 ND	< 3.79E+00	< 6.94E-06
1,2-Dichlorobenzene 1,3-Dichlorobenzene	0.84 ND 1.2 ND	0.51 ND	1.5 ND 1.2 ND	< 8.56E-01 < 8.92E-01	< 1.57E-06 < 1.63E-06
1,4-Dichlorobenzene	1.1 ND	0.53 ND	1.7 ND	< 1.00E+00	< 1.83E-06
3,3*-Dichlorobenzidine 2,4-Dichlorophenol	2.7 ND 1.5 ND	7.4 ND 0.5 ND	6.6 ND 2 ND	< 5.02E+00 < 1.20E+00	< 9.19E-06 < 2.20E-06
Dietnyi pritnalate	1.5 ND	0.73 ND	1.2 ND	< 1.03E+00	< 1.89E-06
2,4-Dimethylphenol	2.9 ND	6.3 ND	1.3 ND	< 3.15E+00	< 5.78E-06
Dimethylphthalate 4,6-Dinitro-2-methylphenol	0.63 ND 5 ND	0.5 ND 8.7 ND	1.1 ND 1.2 ND	< 6.70E-01 < 4.48E+00	< 1.23E-06 < 8.20E-06
2,4-Dinitrophenol	5.9 ND	22 ND	3.4 ND	< 9.40E+00	< 1.72E-05
2,4-Dinitrotoluene	1.6 ND	0.5 ND	2.3 ND	< 1.32E+00	< 2.42E-06
2,6-Dinitrotoluene Di-n-octyl phthalate	1.3 ND 2.1 ND	0.5 ND 0.56 ND	1.8 ND 2.1 ND	< 1.08E+00 < 1.43E+00	< 1.98E-06 < 2.62E-06
Hexachlorobenzene	0.56 ND	0.5 ND	2.3 ND	< 1.01E+00	< 1.85E-06
Hexachlorobutadiene	1.4 ND	0.74 ND	1.6 ND	< 1.12E+00	< 2.06E-06
Hexachlorocyclo-pentadiene Hexachloroethane	10 ND 2.5 ND	10 ND 0.54 ND	5.6 ND 1.7 ND	< 7.69E+00 < 1.42E+00	< 1.41E-05 < 2.61E-06
Isophrone	0.66 ND	0.5 ND	1.5 ND	< 7.99E-01	< 1.46E-06
2-Methylphenol	2.3 ND	3 ND	1.8 ND	< 2.13E+00	< 3.91E-06
2-Nitroaniline 3-Nitroaniline	0.56 ND 3.8 ND	0.5 ND 2 ND	2.4 ND 4 ND	< 1.04E+00	< 1.90E-06 < 5.39E-06
4-Nitroaniline	2.3 ND	2 ND	3.3 ND	< 2.28E+00	< 4.18E-06
Nitrobenzene	0.73 ND	0.5 ND	1.4 ND	< 7.90E-01	< 1.45E-06
2-Nitrophenol 4-Nitrophenol	3.2 ND 3.3 ND	0.5 ND 3.3 ND	2.3 ND 3.3 ND	< 1.80E+00 < 2.97E+00	< 3.30E-06 < 5.45E-06
N-Nitrosodiphenylamine	0.6 ND	0.87 ND	1.2 ND	< 8.02E-01	< 1.47E-06
N-Nitroso-di-n-propylamine	0.73 ND	0.5 ND	2 ND	< 9.70E-01	< 1.78E-06
2,2'-oxybis (1-Chloropropane) Pentachlorophenol	1 ND 25 ND	0.76 ND 25 ND	1.5 ND 2.9 ND	< 9.79E-01 < 1.59E+01	< 1.79E-06 < 2.91E-05
Phenol	1.1 ND	0.9 ND	1.8 ND	< 1.14E+00	< 2.09E-06
1,2,4-Trichlorobenzene	0.73 ND 2.3 ND	0.59 ND 1.3 ND	1.8 ND	< 9.37E-01	< 1.72E-06
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	1.4 ND	0.75 ND	1.8 ND 2.1 ND	< 1.62E+00 < 1.28E+00	< 2.97E-06 < 2.34E-06
Special Target Analytes					
Acetophenone	0.77 ND 0.95 ND	7.3 ND	2.2 ND 16 ND	< 2.09E+00 < 7.28E+00	< 3.83E-06 < 1.33E-05
Aniline Anthracene	0.51 ND	8.5 ND	1.4 ND	< 7.24E-01	< 1.33E-06
Benzaldehyde	2.6 ND	5.1 J 51 ND	1.8 ND	< 2.85E+00	< 5.23E-06
Benzidine	51 ND	51 ND	56 ND 1.5 ND	< 4.75E+01 < 8.71E-01	< 8.69E-05 < 1.60E-06
Benzo(a)anthracene	U 83 ND				
Benzo(a)anthracene Benzo(b)fluoranthene	0.82 ND 1.4 ND	0.58 ND 1.1 ND			
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene	1.4 ND 2.1 ND	1.1 ND 1.6 ND	3.6 ND 2.5 ND	< 1.83E+00 < 1.86E+00	< 3.36E-06 < 3.41E-06
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	1.4 ND 2.1 ND 42 ND	1.1 ND 1.6 ND 46 ND	3.6 ND 2.5 ND 8 ND	< 1.83E+00 < 1.86E+00 < 2.88E+01	< 3.36E-06 < 3.41E-06 < 5.20E-05
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid Benzonitrile	1.4 ND 2.1 ND 42 ND 2.4 ND	1.1 ND 1.6 ND 46 ND 1.7 ND	3.6 ND 2.5 ND 8 ND 2.2 ND	< 1.83E+00 < 1.86E+00 < 2.88E+01 < 1.89E+00	< 3.36E-06 < 3.41E-06 < 5.20E-05 < 3.47E-06
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzoic acid Benzonitrile Benzonitrile Benzo(a)p)erylene Benzo(a)pyrene	1.4 ND 2.1 ND 42 ND 2.4 ND 2.8 ND 1 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND	< 1.83E +00 < 1.86E +00 < 2.88E +01 < 1.89E +00 < 1.57E +00 < 9.01E-01	< 3.36E-06 < 3.41E-06 < 5.20E-05 < 3.47E-06 < 2.87E-06 < 1.65E-06
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(c)fluoranthene Benzo(c) acid Benzonitrille Benzo(ghi)perylene Benzo(a)pyrene Carbazole	1.4 ND 2.1 ND 42 ND 2.4 ND 2.8 ND 1 ND 0.76 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.9 ND	< 1.83E+00 < 1.86E+00 < 2.80E+01 < 1.89E+00 < 1.57E+00 < 9.01E-01 < 9.91E-01	 3.36E-06 3.41E-06 5.20E-05 3.47E-06 2.87E-06 1.65E-06 1.82E-06
Benzo(a)arahracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(acid Benzo(aritrile Benzo(ah)psrylene Benzo(a)pyrene Carbazole Chrysene	1.4 ND 2.1 ND 42 ND 2.4 ND 2.8 ND 1 ND 0.76 ND 0.88 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.64 ND 0.6 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND	< 1.83E+00 < 1.86E+00 < 2.83E+01 < 1.85E+00 < 1.57E+00 < 9.01E-01 < 9.91E-01 < 7.87E.01	< 3.36E-06 < 3.41E-06 < 5.20E-05 < 3.47E-06 < 2.87E-06 < 1.65E-06 < 1.82E-06 < 1.44E-06
Benzo(a)archracene Benzo(b)fucranthene Benzo(b)fucranthene Benzo(c)fucranthene Benzo(a)arch Benzo(a)arch Benzo(a)arch Benzo(a)arch Benzo(a)arch Benzo(a)arch Carbazole Chrysene Dibenz(a)anhantacene 1,3-Dinintobenzene	1.4 ND 2.1 ND 42 ND 2.4 ND 2.8 ND 1 ND 0.76 ND 0.88 ND 2 ND 0.59 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.64 ND 0.6 ND 0.52 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND	 1.83E+00 1.86E+00 2.88E+01 1.89E+00 1.57E+00 9.91E-01 7.87E-01 7.87E-01 1.50E+00 1.00E+00 	 3.36E.06 3.41E.06 5.20E.05 3.47E.06 2.87E.06 1.65E.08 1.82E.06 1.44E.06 2.75E.06 1.99E.06
Benzo(a)arthracene Benzo(b)fucranthere Benzo(b)fucranthere Benzo(c)fucranthere Benzo(c)fucranthere Benzo(a)pyrene Benzo(a)pyrene Carbazole Chrysene Dibenz(ah)anthracene 1,3-Dintrobenzene Diphenytamine	1.4 ND 2.1 ND 42 ND 2.4 ND 2.8 ND 1 ND 0.75 ND 0.88 ND 2 ND 0.59 ND 0.59 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.64 ND 0.60 ND 0.52 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND 2.4 ND 2.5 ND 2.5 ND	 1.83E+00 1.86E+00 2.88E+01 1.89E+00 1.57E+00 9.01E-01 7.87E-01 1.50E+00 1.00E+00 1.05E+00 	 3.36E-06 3.41E-06 5.28E-05 3.47E-06 2.87E-06 1.65E-06 1.82E-06 1.44E-06 2.75E-06 1.99E-06 1.93E-06
Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchie Benz (a) Benz	1.4 ND 2.1 ND 42 ND 2.4 ND 2.6 ND 1 ND 0.76 ND 0.88 ND 2 ND 0.59 ND 0.59 ND 0.63 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.64 ND 0.6 ND 0.52 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.1 ND 2.4 ND 2.5 ND 2.5 ND 1.2 ND	 1.83E+00 1.86E+00 2.88E+01 1.89E+00 1.57E+00 9.91E-01 7.87E-01 1.50E+00 1.00E+00 1.00E+00 7.00E+01 	 3.36E.06 3.41E.06 5.20E.05 3.47E.06 2.87E.06 1.65E.06 1.82E.06 1.44E.06 2.75E.06 1.99E.06 1.28E.06
Benzóg/Jarchacene Benzóg/Jarchacene Benzóg/Jarchachene Benzóg/Jarchachene Benzóg/Jarchachene Benzóg/Jarchachene Benzóg/Jarchachene Benzóg/Jarchachene Benzóg/Jarchachene Carbazole Chrysene Dibenzógharthracene 1,2-Dintrobenzene Diphenylamine 1,2-Diphenylamine Fluoranthene Fluoranthene	1.4 NO 2.1 ND 42 ND 2.4 ND 2.8 NO 1 ND 0.76 ND 0.88 ND 2 NO 0.59 ND 0.63 ND 0.51 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.6 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.53 ND 0.55 ND	36 ND 25 ND 8 ND 22 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND 2.4 ND 2.5 ND 2.5 ND 1.2 ND 1.5 ND	 1,83E+00 1,86E+01 2,88E+01 1,89E+00 1,89E+00 9,91E-01 9,91E-01 7,87E-01 1,57E+00 9,91E-01 7,97E-01 7,87E-01 7,00E+00 7,00E+00 7,51E-01 9,94E-01 	 3.36E-06 3.41E-06 5.28E-05 3.47E-06 2.87E-06 1.65E-06 1.82E-06 1.99E-06 1.99E-06 1.28E-06 1.38E-06 1.38E-06
Benc (a) Janchiace ne Benc (a) Janchiace ne Benc (a) Janchiace ne Benc (a) Janchie Janchie Janchie Janchie Jacoben (a) Janchie Jacoben (a) Janchie Jacoben (a) Janchie Fluorente Benc (a) Janchie	1.4 NO 2.1 ND 42 ND 2.4 ND 2.4 ND 1 ND 0.76 ND 0.88 ND 2 ND 0.59 ND 0.63 ND 0.51 ND 0.51 ND 0.51 ND	1.1 NO 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.64 ND 0.52 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND	36 ND 25 ND 8 ND 22 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND 2.4 ND 2.5 ND 2.5 ND 2.5 ND 1.2 ND 1.5 ND 2.3 ND	c 1,83E+00 c 2,88E+01 c 1,88E+00 c 2,88E+01 c 1,89E+00 c 9,91E-01 c 9,91E-01 c 7,87E-01 c 1,50E+00 c 1,00E+00 c 7,01E-01 c 7,51E-01 c 9,94E-01 c 7,51E-01 c 9,94E-01 c 1,05E+00	 336E-06 3.41E-06 5.20E-05 3.47E-06 2.87E-06 1.65E-06 1.65E-06 1.95E-06 1.99E-06 1.99E-06 1.39E-06 1.39E-06 1.39E-06 1.39E-06 2.50E-06
Benc (a) Janchiace ne Benc (a) Janchiace ne Benc (a) Janchiace ne Benc (a) Janchie Janchie Janchie Janchie Jacoben (a) Janchie Jacoben (a) Janchie Jacoben (a) Janchie Fluorente Benc (a) Janchie	1.4 NO 2.1 ND 42 ND 2.4 ND 2.8 NO 1 ND 0.76 ND 0.88 ND 2 NO 0.59 ND 0.63 ND 0.51 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.6 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.53 ND 0.55 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND 2.4 ND 2.5 ND 2.5 ND 2.5 ND 1.2 ND 1.2 ND 1.3 ND 1.9 ND 1.9 ND	C 1,83E-401	 3 38E-06 5 20E-05 3 4TE-06 5 20E-05 3 4TE-06 2 87E-06 1 68E-06 1 20E-06 1 39E-06 1 39E-06 1 39E-06 1 30E-06 1 30E-06 1 30E-06 1 30E-06 1 30E-06 1 30E-06 3 41E-06 3 41E-06 3 41E-06
Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchie Benz (a) Ja	1.4 NO 2.1 ND 42 NO 42 NO 2.4 NO 2.8 NO 1 ND 0.66 NO 0.88 NO 0.59 NO 0.50 NO 0.51 ND 0.51 ND 0.51 ND 0.51 ND 0.51 ND 0.55 NO	1.1 ND 16 ND 46 ND 46 ND 0.62 ND 0.55 ND 0.64 ND 0.65 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.56 ND 0.56 ND 0.57 ND 0.57 ND 0.58 ND	36 ND 25 ND 0 ND 22 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND 2.4 ND 2.5 ND 1.2 ND 1.5 ND 2.5 ND 1.5 ND	c 1,83E-00 c 1,88E-00 c 2,88E-01 c 1,88E-00 c 9,91E-01 c 7,87E-01 c 1,00E-00 c 7,00E-01	c 3,38E.06 c 3,41E.06 c 5,20E.05 c 1,65E.05 c 1,65E.05 c 1,46E.05 c 1,99E.06 c 1,39E.06 c 1,39E.06 c 1,39E.06 c 1,44E.06 c 1,44E.06
Benca(a)archiacene Benca(b)fusorathene Benca(b)fusorathene Benca(b)fusorathene Benca(a)fusorathene Benca(a)fusorathene Benca(a)fusorathene Benca(a)fusorathene Benca(a)fusorathene Benca(a)fusorathene Chrysene Deerz(ch)anthracene 1,3-Dintrobencene Diphenylamica 1,3-Diphenylamica Fluorene Fluorene Fluorene Indena(1,2) adjayrene 2-Methylinsphthalene 3, & 4-Methylphenol Naphthalene Naphthalene Naphthalene	1.4 NO 2.1 ND 42 ND 2.4 ND 2.4 ND 2.8 NO 0.56 ND 0.58 ND 0.59 ND 0.59 ND 0.51 ND 0.51 ND 0.51 ND 0.55 ND 0.51 ND 0.55 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.5 ND 0.64 ND 0.64 ND 0.52 ND 0.5 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND 2.4 ND 2.5 ND 1.2 ND 1.2 ND 1.2 ND 1.5 ND 1.9 ND 1.1 ND 1.9 ND 1.1	C 1,83E-00	 3 38E-06 3 41E-06 5 20E-05 3 34F-06 2 8F-06 1 68E-06 1 82E-06 1 44E-06 2 75E-06 1 99E-06 1 39E-06 2 1 39E-06 1 39E-06 1 39E-06 1 38E-06 1 38E-06 1 38E-06 3 41E-06 2 50E-06 3 41E-06 3 41E-06 1 43E-06 1 1 43E-06 1 1 1 43E-06 1 1 1 43E-06
Benz (g/Juarentene Benz (g/Juarenthene Benz (g/Juarenthene Benz (g/Juarenthene Benz (g/Juarenthene Benz (g/Juarenthene Benz (g/Juarenthene Benz (g/Juarene Carbazele Chrysene Deerz (g/Juarene Labenz) Labenz (g/Juarene Labenz) L	1.4 NO 2.1 ND 42 NO 42 NO 2.4 NO 2.8 NO 1 ND 0.66 NO 0.88 NO 0.59 NO 0.50 NO 0.51 ND 0.51 ND 0.51 ND 0.51 ND 0.51 ND 0.55 NO	1.1 ND 16 ND 46 ND 46 ND 0.62 ND 0.55 ND 0.64 ND 0.65 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.56 ND 0.56 ND 0.57 ND 0.57 ND 0.58 ND	36 ND 25 ND 0 ND 22 ND 1.8 ND 1.5 ND 1.9 ND 1.1 ND 2.4 ND 2.5 ND 1.2 ND 1.5 ND 2.5 ND 1.5 ND	c 1,83E-00 c 1,88E-00 c 2,88E-01 c 1,88E-00 c 9,91E-01 c 7,87E-01 c 1,00E-00 c 7,00E-01	c 3,38E.06 c 3,41E.06 c 5,20E.05 c 1,65E.05 c 1,65E.05 c 1,46E.05 c 1,99E.06 c 1,39E.06 c 1,39E.06 c 1,39E.06 c 1,44E.06 c 1,44E.06
Benz (a) Janchiace ne Lorbazate Crivyaee Debenz (a) Janchiace ne La Debenz (a) Janchiace ne La Deptenz (a) Janch	1.4 ND 2.1 ND 42 ND 24 ND 24 ND 25 ND 0.76 ND 0.76 ND 0.59 ND 0.59 ND 0.51 ND 2.1 ND 0.51 ND 0.55 ND	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.55 ND	3.6 ND 2.5 ND 8 ND 8 ND 1.5 ND 1.15 ND 1.19 ND 1.11 ND 2.4 ND 2.5 ND 1.2 ND 1.2 ND 1.5	1,83E-00	c 3,38E.06 c 3,41E.06 c 5,20E.05 c 1,42E.06 c 1,82E.06 c 1,82E.06 c 1,82E.06 c 1,99E.06 c 1,99E.06 c 1,39E.06 c 1,49E.06 c 1,49E.06 c 1,49E.06 c 1,49E.06 c 1,49E.06 c 1,44E.06 c 1,44E.06
Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchiene Chrysene Deerz (a) Janchiene Deerz (a) Janchiene Deerz (a) Janchiene Tuorene Diphenylarine Tuorene Fluorene Fluorene Indeno (1, 2) a dy janchiene Pluorene Indeno (2, 3) a 4, Methylphenol Naphthalene Naphthalene Naphthalene Naphthalene Pentschlorobenzene Pentschlorobenzene Pentschlorobenzene Pentschlorobenzene Pentschlorobenzene	1.4 ND 2.1 ND 42 ND 42 ND 2.4 ND 2.8 ND 0.76 ND 0.58 ND 0.59 ND 0.65 ND 0.65 ND 0.65 ND 0.50 N	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.55 ND	3.6 ND 2.5 ND 8 ND 8 ND 1.5 ND 1.15 ND 1.19 ND 1.11 ND 2.4 ND 2.5 ND 1.2 ND 1.2 ND 1.5	c 1,83E-00 c 2,80E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 7,87E-01 c 1,50E-00 c 1,60E-00 c 7,51E-01 c 9,34E-01 c 1,56E-00 c 7,51E-01 c 1,56E-00 c 7,6E-01 c 1,60E-00 c 7,6E-01 c 1,6E-00 c 7,6E-01 c 1,6E-00 c 7,6E-01 c 1,6E-00 c 7,6E-01 c 1,6E-00 c 1	 3.98E-08 3.41E-08 5.20E-05 3.47E-06 2.87E-06 1.86E-08 1.86E-08 1.87E-06 1.97E-06 1.97E-06 1.98E-06 1.98E-06 1.98E-06 1.98E-06 1.80E-08 1.80E-08 1.80E-06 1.80E-06 1.80E-06 1.18E-06
Benz (a) Janchiace ne Lorbazate Crivyaee Debenz (a) Janchiace ne La Debenz (a) Janchiace ne La Deptenz (a) Janch	1.4 ND 2.1 ND 42 ND 24 ND 24 ND 25 ND 0.76 ND 0.76 ND 0.59 ND 0.59 ND 0.51 ND 2.1 ND 0.51 ND 0.55 ND	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.55 ND	3.6 ND 2.5 ND 8 ND 2.2 ND 1.8 ND 1.5 ND 1.1 ND 1.5 ND 2.5 ND 1.2 ND 1.2 ND 1.2 ND 1.2 ND 1.9	1,83E-00	c 3,38E.06 c 3,41E.06 c 5,20E.05 c 1,42E.06 c 1,82E.06 c 1,82E.06 c 1,82E.06 c 1,99E.06 c 1,99E.06 c 1,39E.06 c 1,49E.06 c 1,49E.06 c 1,49E.06 c 1,49E.06 c 1,49E.06 c 1,44E.06 c 1,44E.06
Benz (a) Janchiace ne La	1.4 ND 2.1 ND 42 ND 24 ND 24 ND 24 ND 25 ND 0.76 ND 0.76 ND 0.59 ND 0.59 ND 0.51 ND 2.1 ND 0.51 ND 2.1 ND 0.55 ND 0.51 ND 0.55 ND 0.75 ND 0.75 ND 0.75 ND 0.75 ND 0.75 ND	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.65 ND 0.55 ND	36 NO 25 NO 8 NO 25 NO 8 NO 9 NO 12 NO 18 NO 19 NO 15 NO 19 NO 15	c 1,83E-00 c 2,88E-01 c 1,88E-00 c 2,88E-01 c 1,88E-00 c 1,57E-00 c 9,91E-01 c 9,91E-01 c 1,50E-00 c 1,00E-00 c 1,00E-00 c 1,00E-01 c 7,51E-01	 3.98E-06 3.41E-06 5.20E-05 2.87F-06 1.85E-06 1.85E-06 1.90E-06 1.90E-06 1.90E-06 1.90E-06 1.90E-06 1.90E-06 1.90E-06 1.20E-06 1.30E-06 1.30E-06 1.30E-06 1.30E-06 1.30E-06 1.40E-06 1.40E-06 1.74E-06
Benz (a)Jarahracane Benz (a)Jarahracane Benz (a)Jarahrachene Benz (a)Jarahrachene Benz (a)Jarahrachene Benz (a)Jarahrachene Benz (a)Jarahrachene Benz (a)Jarahrachene Denz (a)Jarahrachene 1,3-Dintrobenzene Debenz (a)Jarahrachene 1,3-Dintrobenzene Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine Pluorene Indenot (2,3-d)pyrene 2-Methylinsphthalene 3,4-Methylphenol Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Pryrene Pyrene Pyrene Pyrene Pyrene Pyrene Texa (3,4-Methylphenolezene Prena (2,4-Methylphenolezene Prena (2,4-Methylphenolezene Prena (2,4-Methylphenolezene Texa (2	1.4 ND 2.1 ND 42 ND 2.4 ND 2.4 ND 2.8 ND 0.76 ND 0.76 ND 0.58 ND 0.59 ND 0.59 ND 0.50 ND 0.51 ND 0.51 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.55 ND 0.57 ND	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND 0.65 ND 0.55 ND	3.6 ND 25 ND 8 ND 8 ND 9 ND 15	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,89E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 7,87E-01 c 1,50E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 7,81E-01 c 1,50E-00 c 7,84E-01 c 1,54E-00 c 7,44E-01 c 1,54E-00 c 9,52E-01	 3.98E-08 3.41E-08 5.20E-05 3.47E-06 2.87E-06 1.68E-08 1.68E-08 1.97E-06 1.97E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.30E-08 1.30E-08 1.30E-06 1.30E-06 1.43E-06 1.43E-06 1.43E-06 1.43E-06 1.43E-06 1.43E-06 1.43E-06 1.43E-06 1.51E-06 1.50E-06 1.30E-06 1.30E-06 1.30E-06 1.74E-06 1.74E-06
Benzéglyarenthere Benzéglyfusorathere Benzéglyfusorathere Benzéglyfusorathere Benzéglyfusorathere Benzéglyfusorathere Benzéglyfusorathere Benzéglygrene Chrysene Denzéglyarene Chrysene Denzéglyarene 1,3-Dintrobenzene Diphenyfamine 1,3-Diphenyfamine 1,3-Diphenyfamine 1,3-Diphenyfamine Fluorene Fluorene Indend(1,2,3-d)pyrene 2-Methyfusphthalene 3,4-Methyfusphthalene Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Proteine Protei	1.4 NO 2.1 ND 42 ND 42 ND 2.4 ND 2.8 ND 0.76 ND 0.58 ND 0.59 ND 0.63 ND 0.59 ND 0.51 ND 0.51 ND 0.55 ND 0.56 ND 0.57 N	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND 0.55 ND	36 NO 25 NO 8 NO 25 NO 8 NO 9 NO 12 NO 18 NO 19 NO 15 NO 19 NO 15	c 1,83E-00 c 2,80E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,01E-01 c 9,91E-01 c 9,91E-01 c 7,87E-01 c 1,50E-00 c 1,06E-00 c 1,06E-00 c 7,00E-01 c 9,94E-01 c 1,56E-00 c 7,81E-01 c 1,56E-00 c 7,81E-01 c 1,66E-00 c 7,47E-01 c 1,66E-00 c 7,47E-01 c 1,66E-00 c 7,47E-01 c 1,66E-00 c 7,47E-01 c 1,64E-00 c 7,47E-01 c 1,64E-00 c 7,47E-01 c 1,84E-00 c 7,47E-01 c 1,84E-00 c 1,52E-00	 3.98E-08 3.41E-08 5.20E-05 3.47E-06 2.87E-06 1.68E-08 1.68E-08 1.68E-08 1.97E-06 2.75E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.102E-06 2.50E-06 2.50E-06 2.50E-06
Benz (a) Jarchiacene Lortycene Carbazele Chrysene Deberz (a) Jarchiacene La Chylorene La Chyloren	1.4 ND 2.1 ND 42 ND 2.4 ND 2.4 ND 2.8 ND 2.8 ND 0.76 ND 0.59 ND 0.59 ND 0.5 ND	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.55 ND	36 NO 25 NO 8 NO 25 NO 8 NO 8 NO 12 NO 15	c 183E-00 c 288E-01 c 188E-00 c 288E-01 c 188E-00 c 188E-00 c 188E-00 c 199E-01 c 99E-01 c 199E-01 c 196E-00 c 105E-00 c 105E-00 c 7.5E-01 c 1.6E-00 c 1.6E-00 c 7.6E-01	 3.98E-06 3.41E-06 5.20E-05 2.87F-06 1.85E-06 1.85E-06 1.85E-06 1.90E-06 2.90E-06 2.93E-06 2.97E-06 2.93E-05 4.73E-06
Benz (a)Jarahracene Deerz (a)Jarahracene 1,3-Dinitrobenzene Deerz (a)Jarahracene 1,3-Dinitrobenzene Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine Pluorene Indenot (2,3-dipyrene 2-Methylinsphthalene 3,4-Methyliphenol Naphthalene Naphthalene Naphthalene Naphthalene Pentachloroinerbenzene Pentachloroinerbenzene Pentachloroinerbenzene Pentachloroinerbenzene Pentachloroinerbenzene Tentaftwer (1987) Unknewn (1987) Unknewn (1985) Unknewn (2555) Unknewn (2555) Unknewn (2555)	1.4 ND 2.1 ND 42 ND 2.4 ND 2.4 ND 2.8 ND 0.76 ND 0.58 ND 0.59 ND 0.59 ND 0.59 ND 0.51 ND 0.59 ND 0.51 ND 0.59 ND 0.50	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.55 ND	3.6 ND 25 ND 8 ND 9 ND 1.5 ND	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 7,87E-01 c 1,05E-00 c 1,05E-00 c 1,05E-00 c 1,05E-00 c 1,05E-00 c 7,70E-01 c 1,85E-00 c 7,81E-01 c 1,86E-00 c 7,81E-01 c 1,86E-00 c 7,47E-01 c 1,86E-00 c 7,86E-01 c 1,86E-00	 3.98E-08 3.41E-08 5.20E-05 3.47E-06 2.87E-06 1.68E-08 1.68E-08 1.68E-08 1.97E-06 2.97E-06
Benz (a)Jarchiacene Chrystene Debez (a)Jarchiacene 1, 3-Dinitrobenzene Diphenylamine 1, 2-Diphenylamine 1, 2-Diphenylamine 1, 2-Diphenylamine 1, 2-Diphenylamine 1, 2-Diphenylamine Pluorene Indenot (2, 3-d)pyrene 2-Methyliaphthalene 3, 4-Methylphenol Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Prome Prymene P	1.4 ND 2.1 ND 42 ND 2.4 ND 2.4 ND 2.8 ND 2.8 ND 0.76 ND 0.59 ND 0.59 ND 0.5 ND	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.65 ND 0.65 ND 0.65 ND 0.55 ND	3.6 ND 25 ND 8 ND 9 ND 1.5 ND	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 1,90E-00 c 1,00E-00	 3.38E-08 3.41E-08 5.20E-05 3.47E-06 2.487E-06 1.68E-08 1.68E-08 1.68E-08 1.69E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.90E-06 1.20E-06 1.20E-06 1.20E-06 1.50E-06 1.49E-06 1.50E-06 1.49E-06 1.16E-06 1.16E-06 1.16E-06 1.16E-06 1.16E-06 1.16E-06 1.16E-06 1.16E-06 1.16E-06 2.59E-06 2.59E-06 2.59E-06 2.59E-06 2.59E-06 2.59E-06 2.59E-06 4.73E-06 4.73E-06
Benz (a) Janchiace ne La Dinyzene Deberz (a) Janchiace ne La Dinyzene Deberz (a) Janchiace ne La Dipheny Janchiace ne Piora ne La La Dipheny Janchiace ne Parta Chiloroben ne Parta Normania ne Part	1.4 ND 2.1 ND 42 ND 2.4 ND 2.4 ND 2.8 ND 2.8 ND 0.76 ND 0.59 ND 0.59 ND 0.5 ND 0.6 ND 0.7 ND 0.8 ND	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.65 ND 0.64 ND 0.55 ND	36 ND 25 ND 8 ND 25 ND 8 ND 18 ND 19 ND 15 ND 19 ND 15 ND 19 ND 15	c 1,83E-600 c 2,88E-601 c 1,88E-600 c 2,88E-601 c 1,87E-600 c 9,91E-01 c 9,91E-01 c 1,50E-600 c 1,05E-600 c 1,05E-600 c 7,51E-01 c 7,51E-01 c 9,94E-01 c 1,86E-600 c 1,86E-600 c 7,86E-600 c 1,86E-600	 3 395-06 3 411-06 5 205-05 2 3 476-06 2 287-06 1 856-06 1 856-06 1 441-06 2 755-06 1 390-06 1 1390-06 1 1390-06 1 1390-06 1 1390-06 1 140-06 1 390-06 1 390-06 1 140-06 1 390-06 1 140-06 1 390-06 1 140-06 1 390-06 1 470-06 2 390-06
Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchiacene Benz (a) Janchie Benz (a	1.4 NO 2.1 ND 42 ND 2.4 ND 2.4 ND 2.4 ND 2.5 ND 0.76 ND 0.76 ND 0.99 ND 0.59 ND 0.59 ND 0.51 ND 0.52 ND 0.52 ND 0.55 ND 0.55 ND 0.55 ND 0.57 ND 0.57 ND 0.57 ND 0.57 ND 0.57 ND 0.57 ND 0.58 ND 0.59 ND 0.59 ND 0.55 N	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND 0.55 ND 0.56 ND 0.57	3.6 ND 2.5 ND 8 ND 9.0	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 1,90E-00 c 1,00E-00 c 7,0E-01 c 1,0E-00 c 1,0	 3 395-06 3 41F-06 5 20E-05 3 47F-06 2 48F-06 1 558-06 1 558-06 1 558-06 1 99E-06 1 99E-06 1 99E-06 1 99E-06 1 39E-06 1 39E-06 1 20E-06 1 20E-06 1 39E-06 1 14E-06 1 14E-06 1 14E-06 1 14E-06 1 39E-06 1 14E-06 2 39E-06 2 39E-06 2 39E-06 2 39E-06 2 20E-05 4 73E-06 2 29E-05 2 29E-05 2 29E-05 2 29E-05 1 10E-05
Benz (glylarenthere Benz (glylarene Carbazele Chrysene 1, 3-Dintrobenzene Debenz (glylarene 1, 3-Dintrobenzene Dephenylarine 1, 2-Dephenylarine 1, 2-Dephenylarine 1, 2-Dephenylarine 1, 2-Dephenylarine 1, 2-Dephenylarine Pluorene Indenos (1, 2, 3-d) pyrene 2-Methylarene 1, 3-Dintrobenzene Pluorene Pluorene Pluorene Pluorene Pents Altonorinerbenzene Pents Altonorinerbenzene Pents Altonorinerbenzene Prens Agricultur (1, 3-d) Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene (1, 3-d) Verkoren	1.4 NO 2.1 ND 42 ND 42 ND 2.4 ND 2.4 ND 2.8 ND 0.76 ND 0.56 ND 0.59 ND 0.59 ND 0.51 ND 0.55 ND 0.55 ND 0.56 ND 0.57 ND 0.57 ND 0.57 ND 0.57 ND 0.58 ND	1.1 ND 1.6 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.65 ND 0.55	3.6 ND 2.5 ND 8 ND 9 ND 1.5 ND	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 1,90E-00 c 1,00E-00	 3 38E-08 3 41E-06 5 20E-05 3 47E-06 2 48T-06 1 58E-08 1 68E-08 1 68E-08 1 1 90E-06 2 75E-08 1 99E-06 1 99E-06 1 99E-06 1 99E-06 1 30E-06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Benzóglyarehacene Benzóglyfarenthere Benzóglyfarenthere Benzóglyfarenthere Benzóglyfarenthere Benzóglyfarenthere Benzóglyfarene Benzóglygrene Carbazele Chrysene Deerzóglyarene Charbazele Chrysene Deerzóglyarene Labenthere Labenthere Labenthere Labenthere Labenthere Labenthere Fluorenthere Fluorenthere Fluorenthere Pluorenthere Labenthyfarene Labentyfarene Labentyf	1.4 ND 2.1 ND 42 ND 2.4 ND 2.4 ND 2.8 ND 2.8 ND 0.76 ND 0.59 ND 0.59 ND 0.5 ND	1.1 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.65 ND 0.64 ND 0.55 ND	36 ND 25 ND 8 ND 25 ND 8 ND 18 ND 19 ND 15 ND 19 ND 15 ND 19 ND 15 ND 19 ND 15	c 1,83E-00 c 2,88E-01 c 1,88E-00 c 2,88E-01 c 1,88E-00 c 1,57E-00 c 9,91E-01 c 9,91E-01 c 1,50E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 7,51E-01 c 9,94E-01 c 1,88E-00 c 7,81E-01 c 9,94E-01 c 1,88E-00 c 7,81E-01 c 1,88E-00 c 7,81E-01 c 9,97E-01 c 1,88E-00 c 7,81E-01 c 1,88E-00 c 7,81E-01 c 1,88E-00 c 7,81E-01 c 1,88E-00 c 7,82E-01 c 1,88E-00 c 1,62E-00 c 1,62E-00 c 1,62E-00 c 1,62E-00 c 1,62E-01 c 1,62E-00 c 1,62E-01 c 1,63E-60	 3.98E-08 3.41E-08 5.20E-05 2.87F-06 1.68E-08 1.68E-08 1.68E-08 1.99E-06 1.79E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.74E-06 2.99E-06 2.99E-06 2.99E-06 2.99E-06 1.10E-05 2.99E-06 1.10E-05 3.36E-06 3.36E-06 3.36E-06 3.36E-06 3.36E-06 3.36E-06 3.36E-06
Benco(a)archiacene Benco(gi)archiacene Benco(gi)archiacene Benco(gi)archiacene Benco(gi)archiacene Benco(gi)archiacene Benco(gi)archiacene Benco(gi)archiacene Benco(gi)archiacene Benco(gi)archiacene Chrysene Deerz(pi)arthracene 1,3-Dintrobenzene Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine 1,2-Diphenylamine Pluorene Indone(1,2,3-dipyrene Juhenylamine) Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Prymine P	1.4 NO 2.1 NO 42 NO 2.1 NO 42 NO 2.4 NO 2.8 NO 0.76 NO 0.56 NO 0.59 NO 0.53 NO 0.51 NO 0.51 NO 0.51 NO 0.51 NO 0.51 NO 0.52 NO 0.55 NO 0.51 NO 0.55 NO	1.1 ND 1.6 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.65 ND 0.65 ND 0.55	3.6 ND 2.5 ND 8 ND 9 ND 1.8 ND 1.8 ND 1.5 ND	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 1,90E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 7,0E-01 c 7,51E-01 c 9,94E-01 c 7,61E-01 c 9,94E-01 c 1,36E-00 c 7,0E-01 c 1,36E-00 c 7,0E-01 c 1,36E-00 c 7,0E-01 c 1,0E-00 c 1,0E	 3.98E-08 3.41E-08 5.20E-05 3.47E-06 2.487E-06 1.68E-08 1.68E-08 1.68E-08 1.98E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.29E-06 1.29E-06 1.29E-06 1.29E-06 1.39E-06 1.49E-06 1.49E-06 1.14E-06 1.14E-06 1.14E-06 1.29E-06 1.14E-06 2.39E-06 2.39E-06 2.29E-05 4.73E-06 2.29E-05 4.51E-05 2.29E-06 2.29E-06 2.29E-06 3.36E-06 3.33E-06 3.33E-06 3.33E-06 3.33E-06 3.33E-06 3.33E-06 3.33E-06 3.33E-06 3.33E-06
Benz (a) Janchiacene La Jan	1.4 NO 2.1 ND 42 ND 2.1 ND 42 ND 2.3 NO 0.76 ND 0.56 ND 0.59 ND 0.53 ND 0.58 N	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND 0.55 ND 0.5	3.6 ND 25 ND 8 ND 9 ND 1.5 ND	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 1,90E-00 c 1,00E-00	 3.98E-08 3.41E-08 5.20E-05 3.47E-06 2.47E-06 1.68E-08 1.68E-08 1.68E-08 1.69E-06 1.99E-06 1.99E-06 1.99E-06 1.29E-06 2.20E-06 1.29E-06 2.20E-05 1.74E-06 2.39E-06 2.39E-06 2.39E-06 2.29E-05 4.73E-06 2.29E-05 4.73E-06 2.29E-05 4.74E-06 2.29E-05 3.36E-06 3.39E-06 3.36E-06 3.39E-06 3.39E-06 3.39E-06 3.39E-06 3.39E-06 3.39E-04 4.51E-05 5.50E-06 2.42E-06
Benz (a) Janchiacene La) Senz (a) Janchiacene La)	1.4 ND 2.1 ND 42 ND 2.1 ND 42 ND 2.2 ND 2.4 ND 2.8 ND 2.8 ND 2.8 ND 2.8 ND 0.5	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND 0.55 ND 0.5	36 ND 25 ND 8 ND 9 ND 18 ND 19 ND 19 ND 15 ND 19 ND 15 ND 19 ND 15 ND 19 ND 25 ND 25 ND 15 ND 25 ND 15 ND 19 ND 15 ND 19 ND 19 ND 19 ND 19 ND 19 ND 15 ND 19 ND 15 ND 19 ND 15 ND 11 NN 15 ND 15 ND 16 ND 17 ND 18 ND 18 ND 18 ND 19 ND 10 ND 11 ND 0 0 0 0 0 0 0 0 0	1,83E-00	 3.38E-08 3.41E-08 5.20E-05 2.47E-06 1.68E-08 1.68E-08 1.68E-08 1.69E-06 1.99E-06 1.39E-06 1.39E-06 1.39E-06 1.29E-06 1.39E-06 1.29E-06 1.29E-06 1.29E-06 1.29E-06 1.29E-06 1.29E-06 1.29E-06 1.29E-06 1.39E-06 1.39E-06 1.39E-06 1.39E-06 1.39E-06 1.39E-06 1.39E-06 1.44E-06 1.39E-06 1.47E-06 1.74E-06 2.29E-05 2.39E-06 2.99E-06 3.37E-06 2.99E-06 3.36E-06 3.36E-06 3.36E-06 3.36E-06 3.36E-06 3.36E-06 4.51E-06 3.36E-06 3.36E-06 4.51E-06 3.36E-06 3.36E-06<
Benz (a) Janchiacene Deerz (a) Janchiacene La Janchiacene Pentachiaceniacene Pentachiacene La Jac-Tetrachiacene La Jac-Tetrachiacene Pentachiacene La Jac-Tetrachiacene	1.4 NO 21 NO 21 NO 22 NO 24 NO 24 NO 24 NO 25 NO 26 NO 26 NO 27 NO 28 NO 38 NO	1.1 ND 1.6 ND 46 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.64 ND 0.65 ND 0.65 ND 0.65 ND 0.55	3.6 ND 2.5 ND 8 ND 9 ND 1.8 ND 1.8 ND 1.5 ND	c 1,83E-00 c 2,88E-01 c 1,89E-00 c 2,80E-01 c 1,89E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 1,90E-00 c 1,00E-00	 3.98E-08 3.41E-08 5.20E-05 3.47E-06 2.47E-06 1.68E-08 1.68E-08 1.68E-08 1.98E-06 1.99E-06 1.99E-06 1.99E-06 1.99E-06 1.29E-06 2.29E-06 1.29E-06 1.29E-06 1.29E-06 1.29E-06 2.29E-06 2.39E-06 2.29F-06 2.29F-06 2.29E-05 4.73E-06 2.29E-05 4.73E-06 2.29F-06 2.29F-06 3.36E-06 3.36E-06 3.30E-06 3.30E-06 3.30E-06 3.29F-06 3.29F-06<
Benz (a) Janchacene Lancacene Lancac	1.4 ND 2.1 ND 42 ND 2.1 ND 42 ND 2.2 ND 2.4 ND 2.8 ND 2.8 ND 2.8 ND 2.8 ND 0.5	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND 0.55 ND 0.5	36 ND 25 ND 8 ND 9 ND 18 ND 19 ND 19 ND 15 ND 19 ND 15 ND 19 ND 15 ND 19 ND 25 ND 25 ND 15 ND 25 ND 15 ND 19 ND 15 ND 19 ND 19 ND 19 ND 19 ND 19 ND 15 ND 19 ND 15 ND 19 ND 15 ND 11 NN 15 ND 15 ND 16 ND 17 ND 18 ND 18 ND 18 ND 19 ND 10 ND 11 ND 0 0 0 0 0 0 0 0 0	c 1,83E-00 c 2,83E-01 c 1,87E-00 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 9,91E-01 c 1,92E-00 c 1,02E-00	 3.38E-06 3.41E-06 5.20E-05 2.87F-06 2.87F-06 1.82E-06 1.82E-06 1.92E-06 2.92E-06 2.92E-06 2.92E-06 2.92E-06 2.92E-06 3.92E-04 4.0E-06 3.92E-04 4.5E-06 2.92E-06 3.92E-06 4.2E-06 2.92E-06 3.92E-06 3.92E-06
Benz (a) Janchiacene Deerz (a) Janchiacene La Janchiacene Pentachiaceniacene Pentachiacene La Jac-Tetrachiacene La Jac-Tetrachiacene Pentachiacene La Jac-Tetrachiacene	1.4 ND 2.1 ND 42 ND 2.2 ND 2.4 ND 2.2 ND 2.5 ND 2.5 ND 0.76 ND 0.5 ND 0.6 ND 0.7 ND 0.8 ND 0.8 ND 0.8 ND 0.9 ND 0.	1.1 ND 1.6 ND 46 ND 1.7 ND 0.62 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND 0.55 ND 0.5	3.6 NO 25 NO 8 NO 9	c 1,83E-00 c 2,88E-01 c 1,88E-00 c 2,88E-01 c 1,88E-00 c 1,87E-01 c 9,91E-01 c 9,91E-01 c 1,57E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 1,00E-00 c 7,51E-01 c 9,94E-01 c 1,88E-00 c 7,81E-01 c 9,37E-01 c 1,88E-00 c 7,47E-01 c 1,88E-00 c 7,47E-01 c 1,48E-00 c 7,47E-01 c 1,48E-00 c 7,47E-01 c 1,48E-00 c 7,47E-01 c 1,48E-00 c 1,62E-00 c 1,62E-00 c 1,62E-00 c 1,62E-00 c 1,62E-00 c 1,62E-01 c 1,68E-00	 3.38E.06 3.41E.06 5.20E.05 3.47E.06 2.48TE.06 1.68E.06 1.68E.06 1.68E.06 1.68E.06 1.98E.06 1.99E.06 2.99E.06 1.49E.06 1.14E.06 1.14E.06 1.14E.06 1.14E.06 1.14E.06 2.99E.06 2.99E.06 2.99E.06 2.99E.06 2.99E.06 2.99E.06 2.99E.06 3.36E.06 3.36E.06 3.36E.06 3.30E.06 3.30E.06 3.30E.06 3.30E.06 3.29E.04 4.51E.05 5.50E.06 2.42E.06 3.25E.06 1.16E.06

NOTE: All concentrations in this table are uncorrected for oxygen concentration.

(a) Stack gas sample volume

17.540 dry standard cubic feet

3.30 dry standard cubic meters

3,800 dry standard cubic feet per minute

18.3 dry standard cubic feet per minute

18.3 dry standard cubic feet per minute

18.3 dry standard cubic meters

18.3 dry standard cubic meters

18.3 dry standard cubic meters per second (c) For non-detects, stack concentrations and emissions are calculated using the detection limit.

Table 7-17. Speciated Semivolatile Organic Compound Emissions – Run 3

Semivolatile Compound	Front Half Analytical Result (ug/sample)	Back Half Analytical Result (ug/sample)	Condensate Analytical Result (ug/sample)	Stack (a,b,c) Concentration (ug/dscm)	Emission Rate (g/s)
Standard Target Analytes Acenaphthene	0.5 ND	0.5 ND	1.7 ND	< 7.58E-01	< 1.46E-0
Acenaphthylene	0.5 ND 35 ND	0.5 ND 35 ND	1.5 ND 1.8 ND	< 7.02E-01 < 2.02E+01	< 1.35E-0 < 3.88E-0
Benzyl alcohol Bis(2-chloroethoxy) methane	0.59 ND	0.5 ND	1.0 ND	< 8.12E-01	< 1.56E-0
Bis-(2-chloroethyl) ether	0.76 ND	0.56 ND	1.5 ND	< 7.92E-01	< 1.53E-0
Bis(2-ethylhexyl) phthalate	3.3 ND 0.53 ND	10 ND 0.5 ND	16 J 1.3 ND	< 8.23E+00 < 6.54E-01	< 1.58E-0 < 1.26E-0
4-Bromophenyl-phenyl ether Butylbenzylphthalate	1.1 ND	0.61 ND	2 ND	< 1.04E+00	< 2.01E-0
4-Chloroaniline	1.2 ND	6 ND	7.1 ND	< 4.02E+00	< 7.74E-0
4-Chloro-3-methylphenol	1 ND	0.62 ND	5.8 ND	< 2.08E+00 < 6.18E-01	< 4.01E-0 < 1.19E-0
2-Chloronaphthalene 2-Chlorophenol	0.5 ND 0.98 ND	0.5 ND 0.5 ND	1.2 ND 1.5 ND	< 6.18E-01 < 8.37E-01	< 1.61E-0
4-Chilorophenyl-phenyl ether	0.51 ND	8.5 ND	2.8 ND	< 1.07E+00	< 2.06E-0
Dibenzofuran Di e kutulektkolete	0.53 ND 0.71 ND	0.5 ND 10 ND	2.6 ND	< 1.02E+00 < 3.57E+00	< 1.96E-0 < 6.88E-0
Di-n-butylphthalate 1,2-Dichlorobenzene	0.84 ND	0.51 ND	2 ND 1.5 ND	< 8.01E-01	< 6.88E-0 < 1.54E-0
1,3-Dichlorobenzene	1.2 ND	0.57 ND	1.3 ND	< 8.62E-01	< 1.66E-0
1.4-Dichlorobenzene	1.1 ND	0.53 ND	1.8 ND	< 9.63E-01	< 1.86E-0
3,3'-Dichlorobenzidine 2,4-Dichlorophenol	2.7 ND 1.5 ND	7.4 ND 0.5 ND	6.9 ND 2.1 ND	< 4.78E+00 < 1.16E+00	< 9.20E-0 < 2.22E-0
Diethyl phthalate	1.5 ND	0.73 ND	1.2 ND	< 9.63E-01	< 1.86E-0
2,4-Dimethylphenol	2.9 ND 0.63 ND	6.3 ND 0.5 ND	1.4 ND	< 2.98E+00	< 5.73E-0
Dimethylphthalate	0.63 ND 5 ND	0.5 ND 8.7 ND	1.2 ND 1.3 ND	< 6.54E-01 < 4.21E+00	< 1.26E-0 < 8.11E-0
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	5.9 ND	22 ND	3.6 ND	< 4.21E+00 < 8.85E+00	< 1.70E-0
2.4-Dinitrotoluene	1.6 NO	0.5 ND	2.4 ND	< 1.26E+00	< 2.43E-0
2,6-Dinitrotoluene	1.3 ND	0.5 ND	1.8 ND	< 1.01E+00	< 1.95E-0
Di-n-octyl phthalate	2.1 ND 0.56 ND	0.56 ND 0.5 ND	2.2 ND 2.4 ND	< 1.37E+00 < 9.72E-01	< 2.63E-0 < 1.87E-0
Hexachlorobenzene Hexachlorobutadiene	1.4 ND	0.5 ND 0.74 ND	2.4 ND 1.7 ND	< 9.72E-01 < 1.08E+00	< 1.8/E-0
Hexachlorocyclo-pentadiene	10 ND	10 ND	5.8 ND	< 7.25E+00	< 1.40E-0:
Hexachloroethane	2.5 ND	0.54 ND	1.7 ND	< 1.33E+00	< 2.56E-0
sophrone 2-Methylphenol	0.66 ND 2.3 ND	0.5 ND 3 ND	1.6 ND 1.9 ND	< 7.75E-01 < 2.02E+00	< 1.49E-0 < 3.89E-0
-Nitroaniline	0.56 ND	0.5 ND		< 1.00E+00	< 1.93E-0
3-Nitroaniline	3.8 ND	2 ND	2.5 ND 4.2 ND	< 2.81E+00	< 5.41E-0
-Nitroaniline	2.3 ND	2 ND	3.4 ND	< 2.16E+00	< 4.17E-0
Nitrobenzene 2-Nitrophenol	0.73 ND 3.2 ND	0.5 ND 0.5 ND	1.5 ND 2.4 ND	< 7.67E-01 < 1.71E+00	< 1.48E-0 < 3.30E-0
-Nitrophenol	3.3 ND	3.3 ND	3.4 ND	< 2.81E+00	< 5.41E-0
N-Nitrosodiphenylamine	0.6 ND	0.87 ND	1.2 ND	< 7.50E-01	< 1.44E-0
N-Nitroso-di-n-propylamine	0.73 ND	0.5 ND	2.1 ND	< 9.35E-01	< 1.80E-0
2,2'-oxybis (1-Chloropropane) Pentachlorophenol	1 ND 25 ND	0.76 ND 25 ND	1.6 ND 3.1 ND	< 9.44E-01 < 1.49E+01	< 1.82E-0 < 2.87E-0
Phenol	1.1 ND	0.9 ND	1.9 ND	< 1.10E+00	< 2.11E-0
1,2,4-Trichlorobenzene	0.73 ND	0.59 ND	1.9 ND	< 9.04E-01	< 1.74E-0
2.4.5-Trichlorophenal 2.4.6-Trichlorophenal	2.3 ND 1.4 ND	1.3 ND 0.75 ND	1.9 ND 2.2 ND	< 1.54E+00 < 1.22E+00	< 2.98E-0 < 2.35E-0
Special Target Analytes					
Acetophenone	0.77 ND	5.1 J	2.3 ND	< 2.29E+00	< 4.42E-0
Aniline Anthracene	0.95 ND 0.51 ND	7.3 ND 0.5 ND	16 ND 1.5 ND	< 6.81E+00 < 7.05E-01	< 1.31E-0 < 1.36E-0
Benzaldehyde	2.6 ND	6.9 J	1.9 ND	< 3.20E+00	< 6.17E-0
Benzidine	51 ND	51 ND	58 ND	< 4.49E+01	< 8.65E-0
Benzo(a)anthracene	0.82 ND	0.58 ND	1.5 ND	< 8.15E-01	< 1.57E-0
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.4 ND 2.1 ND	1.1 ND 1.6 ND	3.8 ND 2.6 ND	< 1.77E+00 < 1.77E+00	< 3.41E-0 < 3.41E-0
Benzoic acid	42 ND	46 ND	8.4 ND	< 2.71E+01	< 5.21E-0
Benzonitrile	2.4 ND	1.7 ND	2.3 ND	< 1.80E+00	< 3.46E-0
Benzo(ghi)perylene	2.8 ND 1 ND	0.62 ND 0.6 ND	1.9 ND 1.6 ND	< 1.49E+00 < 8.71E-01	< 2.88E-0 < 1.68E-0
Benzo(a)pyrene Carbazole	0.76 ND	0.64 ND	2 ND	< 9.55E-01	< 1.84E-0
Chrysene	0.88 ND	0.64 ND	2 ND 1.2 ND 2.5 ND	< 7.64E-01	< 1.47E-0 < 2.76E-0
Dibenz(ah)anthracene	2 ND	0.6 ND	2.5 ND 2.6 ND	< 1.43E+00	< 2.76E-0
,3-Dinitrobenzene Diphenylamine	0.59 ND 0.5 ND	0.52 ND 0.5 ND	2.6 ND 2.6 ND	< 1.04E+00 < 1.01E+00	< 2.01E-0 < 1.95E-0
,2-Diphenylhydrazine	0.63 ND	0.5 ND	1.3 ND	< 6.83E-01	< 1.31E-0
luoranthene	0.5 NO	0.5 ND	1.6 ND	< 7.30E-01	< 1.41E-0
luorene ndeno(1,2,3-cd)pyrene	0.51 ND 2.1 ND	0.5 ND 0.54 ND	2.5 ND 2 ND	< 9.86E-01 < 1.30E+00	< 1.90E-0 < 2.51E-0
-Methylnaphthalene	0.56 ND	0.54 ND	2 ND	< 8.60E-01	< 1.86E-0
& 4-Methylphenol	2.3 ND	2 ND	2 ND	< 1.77E+00	< 3.41E-0
laphthalene	0.5 ND	9.9 J	1.6 ND	< 3.37E+00	< 6.49E-0
4-Nitrosodimethylamine Pentachlorobenzene	0.72 ND 0.52 ND	0.5 ND 0.5 ND	1.9 ND 2 ND	< 8.76E-01 < 8.48E-01	< 1.69E-0 < 1.63E-0
Pentachloronitrobenzene	0.76 ND	0.5 ND	2.3 ND	< 1.00E+00	< 1.93E-0
henanthrene	0.51 ND	0.5 ND	1.7 ND	< 7.61E-01	< 1.47E-0
Pyridine	0.74 NO 0.89 ND	0.53 ND 0.74 ND	1.3 ND 4.7 ND	< 7.22E-01 < 1.78E+00	< 1.39E-0 < 3.42E-0
,2,4,5-Tetrachlorobenzene	0.87 ND	0.5 ND	1.9 ND	< 9.18E-01	< 1.77E-0
entatively Identified Compound	ls				
Jnknown (2.7427)	23 NJ	0	0	6.46E+00	1.24E-0
-Octadecenamide, (Z)- Jnknown (12.701)	14 NJ 5.7 NJ	0	0	3.93E+00 1.60E+00	7.57E-0 3.08E-0
Jnknown (2.1492)	0	70 NJ	0	1.97E+01	3.79E-0
Toluene	0	55 NJ	0	1.54E+01	2.98E-0
Methane, dibromochloro-	0	9.9 NJ	0	2.78E+00	5.36E-0
etrachloroethylene Jnknown (2.7779)	0	21 NJ 630 NJ	0	5.90E+00 1.77E+02	1.14E-0 3.41E-0
Benzene, chloro-	0	260 NJ	0	7.30E+01	1.41E-0
Methane, tribromo-	0	14 NJ	0	3.93E+00	7.57E-0
Benzaldehyde, 3-ethyl-	0	7.2 NJ	0 120 NU	2.02E+00	3.89E-0
3-Penten-2-one, 4-methyl- Jnknown (2.5254)	0	0	120 NJ 37 NJ	3.37E+01 1.04E+01	6.49E-0 2.00E-0 1.84E-0
	U	0	34 NJ	9.56E+00	2.000-0

NOTE: All concentrations in this table are uncorrected for oxygen concentration. (a) Stack gas sample volume

(a) Stack gas sample volume

125.710 dry standard cubic feet
3.56 dry standard cubic meters
4,080 dry standard cubic feet per minute
1.93 dry standard cubic meters
4,080 dry standard cubic feet per minute
1.93 dry standard cubic meters per second

Table 7-18. Total Volatile Organic Compound Emissions (C1 - C7) - Run 1

Volatile Compound	Bag Analytical Result (ppmv, dry)	Condensate Analytical Result (ug/sample)	Co	tack (a,b,c) encentration ppmv, dry)	Ct	tack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)
Total C1	1.72	0	Τ	1.72E+00		1.15E+03	Τ	2.76E-03
Total C2	0.083 ND	0	<	8.30E-02	<	1.04E+02	<	2.49E-04
Total C3	0.11 ND	0	<	1.10E-01	<	2.02E+02	<	4.85E-04
Total C4	0.08 ND	0.042 ND	<	8.08E-02	<	1.96E+02	<	4.69E-04
Total C5	0.14 ND	0.02436 J,B	<	1.40E-01	<	4.22E+02	<	1.01E-03
	0.13 ND	0.03108 J	<	1.30E-01	<	4.68E+02	<	1.12E-03
Total C6	טאו כו.ט	0.001000	1 -	1.00_01	1 '	4.00L 102	Ι.	1.120 00

	Total Volatile Organics	<	2.443	0.10164	<	2.44E+00	<	3.29E+03	<	7.90E-03
•										

(a) Stack gas sample volume

0.759 dry standard cubic feet

0.02 dry standard cubic meters

(b) Stack gas flow rate

5,080 dry standard cubic feet per minute

2.40 dry standard cubic meters per second

Table 7-19. Total Volatile Organic Compound Emissions (C1 - C7) - Run 2

Volatile Compound	Bag Analytical Result (ppmv, dry)	Condensate Analytical Result (ug/sample)	Co	itack (a,b,c) oncentration (ppmv, dry)	1	Stack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)
Total C1	1.76	0		1.76E+00		1.18E+03	П	2.14E-03
Total C2	0.083 ND	0	<	8.30E-02	<	1.04E+02	<	1.89E-04
Total C3	0.11 ND	0	<	1.10E-01	<	2.02E+02	<	3.68E-04
Total C4	0.08 ND	0.042 ND	<	8.07E-02	<	1.95E+02	<	3.56E-04
Total C5	0.14 ND	0.01386 J,B	<	1.40E-01	<	4.21E+02	<	7.68E-04
Total C6	0.13 ND	0.03654 J	<	1.30E-01	<	4.68E+02	<	8.53E-04
Total C7	0.18 ND	0.0042 ND	<	1.80E-01	<	7.52E+02	<	1.37E-03
Total Volatile Organics	< 2.483	0.0966	<	2.48E+00	<	3.32E+03	<	6.05E-03

(a) Stack gas sample volume

0.894 dry standard cubic feet

0.03 dry standard cubic meters

(b) Stack gas flow rate

3,860 dry standard cubic feet per minute

1.82 dry standard cubic meters per second

Table 7-20. Total Volatile Organic Compound Emissions (C1 - C7) - Run 3

Volatile Compound	Bag Analytical Result (ppmv, dry)	Condensate Analytical Result (ug/sample)	Co	tack (a,b,c) ncentration opmv, dry)	1	Stack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)
Total C1	1.68	0	Т	1.68E+00		1.12E+03	Т	2.15E-03
Total C2	0.083 ND	0	<	8.30E-02	<	1.04E+02	<	1.99E-04
Total C3	0.11 ND	0	<	1.10E-01	<	2.02E+02	<	3.87E-04
Total C4	0.08 ND	0.042 ND	<	8.06E-02	<	1.95E+02	<	3.74E-04
Total C5	0.14 ND	0.0126 J,B	<	1.40E-01	<	4.21E+02	<	8.07E-04
Total C6	0.13 ND	0.03906 J	<	1.30E-01	<	4.68E+02	<	8.97E-04
Total C7	0.18 ND	0.0042 ND	<	1.80E-01	<	7.52E+02	<	1.44E-03
Total Volatile Organics	< 2.403	0.09786	 <	2.40E+00	<	3.26E+03	I<	6.26E-03

(a) Stack gas sample volume

1.065 dry standard cubic feet

0.03 dry standard cubic meters

(b) Stack gas flow rate

4,060 dry standard cubic feet per minute

1.92 dry standard cubic meters per second

Table 7-21. Total Semivolatile and Nonvolatile Organic Emissions – Run 1

Parameter		
Stack Sa	mpling Parameters	
Net sampling time	minutes	240
Stack gas flow rate	dscfm	5,080
	acfm	11,370
	dscm/min	143.87
Stack gas temperature	°F	175
Stack gas velocity	ft/min	3,618
Stack gas sample volume	dscf	134.440
	dscm	3.807
Isokinetic	%	97.7
Stack gas moisture content	vol %	45.5
Stack gas carbon dioxide content	vol %, dry	6.4
Stack gas oxygen content	vol %, dry	9.8
Total Semivo	latile Organics by TCO	
Total semivolatiles collected	ug	5320
TCO concentration	ug/dscm	1.40E+03
	ug/dscm @7% O2	1.75E+03
TCO emission rate	lb/h	2.66E-02
	kg/h	1.21E-02
	g/s	3.35E-03
Total Nonvola	atile Organics by GRAV	
Total nonvolatiles collected	ug	3050
GRAV concentration	ug/dscm	8.01E+02
	ug/dscm @7% O₂	1.00E+03
GRAV emission rate	lb/h	1.52E-02
	kg/h	6.92E-03
	g/s	1.92E-03

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-22. Total Semivolatile and Nonvolatile Organic Emissions – Run 2

Parameter	Units	Measured Value
Stack Sa	mpling Parameters	P
Net sampling time	minutes	240
Stack gas flow rate	dscfm	3,860
	acfm	8,610
	dscm/min	109.32
Stack gas temperature	°F	174
Stack gas velocity	ft/min	2,742
Stack gas sample volume	olume dscf	
	dscm	3.407
Isokinetic	%	98.9
Stack gas moisture content	vol %	45.1
Stack gas carbon dioxide content	vol %, dry	7.2
Stack gas oxygen content	vol %, dry	8.9
Total Semivo	latile Organics by TCO	
Total semivolatiles collected	ug	2830
TCO concentration	ug/dscm	8.31E+02
	ug/dscm @7% O₂	9.61E+02
TCO emission rate	lb/h	1.20E-02
	kg/h	5.45E-03
	g/s	1.51E-03
Total Nonvol	atile Organics by GRAV	
Total nonvolatiles collected	ug	2260
GRAV concentration	ug/dscm	6.63E+02
	ug/dscm @7% O₂	7.68E+02
GRAV emission rate	lb/h	9.59E-03
	kg/h	4.35E-03
	g/s	1.21E-03

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-23. Total Semivolatile and Nonvolatile Organic Emissions – Run 3

Parameter	Units	Measured Value
Stack Sa	mpling Parameters	
Net sampling time	minutes	240
Stack gas flow rate	dscfm	4,060
	acfm	8,890
	dscm/min	114.98
Stack gas temperature	۴	175
Stack gas velocity	ft/min	2,832
Stack gas sample volume	dscf	125.030
	dscm	3.541
Isokinetic	%	97.7
Stack gas moisture content	vol %	44.5
Stack gas carbon dioxide content	vol %, dry	7.1
Stack gas oxygen content	vol %, dry	9.3
Total Semivo	latile Organics by TCO	
Total semivolatiles collected	ug	1924
TCO concentration	ug/dscm	5.43E+02
	ug/dscm @7% O2	6.50E+02
TCO emission rate	lb/h	8.26E-03
	kg/h	3.75E-03
	g/s	1.04E-03
Total Nonvola	atile Organics by GRAV	
Total nonvolatiles collected	ug	2250
GRAV concentration	ug/dscm	6.35E+02
	ug/dscm @7% O₂	7.60E+02
GRAV emission rate	lb/h	9.66E-03
	kg/h	4.38E-03
	g/s	1.22E-03

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute dscm = Dry standard cubic meters

Table 7-24. PCDD/PCDF Emission Summary - Run 1

Parameter	Units		Measured Value
Stack Sampli	ng Parameters		
Net sampling time	minutes		240
Stack gas flow rate	dscfm		5,290
	acfm		11,760
Stack gas temperature	°F		176
Stack gas velocity	ft/min		3,744
Stack gas sample volume	dscf		139.210
	dscm		3.943
Isokinetic	%		101.2
Stack gas moisture content	vol%		45.2
Stack gas carbon dioxide	vol %, dry		6.4
Stack gas oxygen	vol %, dry		9.8
PCDD	/PCDF		
Total PCDD/PCDF	pg/sample	<	12288
Stack gas PCDD/PCDF concentration	ng/dscm	<	3.12E+00
Stack gas PCDD/PCDF concentration	ng/dscm @7% O₂	<	3.90E+00
PCDD/PCDF emission rate	g/s	<	7.78E-09
PCDD/PCDF Toxic Equ	ivalents as 2,3,7,8-TCD	D	
Stack gas PCDD/PCDF concentration	ng/dscm	<	5.23E-02
Stack gas PCDD/PCDF concentration	ng/dscm @7% O₂	<	6.53E-02
PCDD/PCDF emission rate	g/s	<	1.30E-10

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute

Table 7-25. PCDD/PCDF Emission Summary – Run 2

Parameter	Units		Measured Value
Stack Sampli	ng Parameters		
Net sampling time	minutes		240
Stack gas flow rate	dscfm		3,780
	acfm		8,320
Stack gas temperature	°F		175
Stack gas velocity	ft/min		2,646
Stack gas sample volume	dscf		119.220
	dscm		3.376
Isokinetic	%		100.9
Stack gas moisture content	vol%		44.4
Stack gas carbon dioxide	vol %, dry		7.2
Stack gas oxygen	vol %, dry		8.9
PCDD	I/PCDF		
Total PCDD/PCDF	pg/sample	<	7223.8
Stack gas PCDD/PCDF concentration	ng/dscm	<	2.12E+00
Stack gas PCDD/PCDF concentration	ng/dscm @7% O₂	<	2.45E+00
PCDD/PCDF emission rate	g/s	<	3.78E-09
PCDD/PCDF Toxic Equ)D	
Stack gas PCDD/PCDF concentration	ng/dscm	<	4.52E-02
Stack gas PCDD/PCDF concentration	ng/dscm @7% O₂	<	5.23E-02
PCDD/PCDF emission rate	g/s	<	8.07E-11

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute

Table 7-26. PCDD/PCDF Emission Summary – Run 3

Parameter	Units		Measured Value
Stack Sampli	ng Parameters		
Net sampling time	minutes		240
Stack gas flow rate	dscfm		4,040
	acfm		8,850
Stack gas temperature	°F		175
Stack gas velocity	ft/min		2,820
Stack gas sample volume	dscf		126.180
	dscm		3.573
Isokinetic	%		99.9
Stack gas moisture content	vol%		44.5
Stack gas carbon dioxide	vol %, dry		7.1
Stack gas oxygen	vol %, dry		9.3
PCDD	/PCDF		
Total PCDD/PCDF	pg/sample	<	9067.1
Stack gas PCDD/PCDF concentration	ng/dscm	<	2.49E+00
Stack gas PCDD/PCDF concentration	ng/dscm @7% O ₂	<	2.98E+00
PCDD/PCDF emission rate	g/s	<	4.75E-09
PCDD/PCDF Toxic Equ	ivalents as 2,3,7,8-TCE	D	
Stack gas PCDD/PCDF concentration	ng/dscm	<	5.23E-02
Stack gas PCDD/PCDF concentration	ng/dscm @7% O ₂	<	6.25E-02
PCDD/PCDF emission rate	g/s	<	9.96E-11

dscfm = Dry standard cubic feet per minute

acfm = Actual cubic feet per minute

Table 7-27. PCDD/PCDF Congener and TEQ Emissions – Run 1

Congener PCDD/PCDF No. Compound		Analyt Resu (pg/san	ılt	Stack (a,b,c) Concentration	2,3,7,8- TCDD Toxicity Equivalence	Stack Concentration Toxic Equivalents	Emission Rate as 2,3,7,8- TCDD
		Front Half Back Half (ng/dscm) Factor	Factor	(ng/dscm)	(g/s)		
			PCDDs				1
1	2,3,7,8-TCDD	10 ND	19 Q	< 4.82E-03	1	< 4.82E-03	< 1.20E-11
	Other TCDD	0	1681	4.26E-01			
	Total TCDD	4 Q,J	1700 Q	4.32E-01			
2	1,2,3,7,8-PeCDD	50 ND	33 J	< 8.37E-03	0.5	< 4.19E-03	< 1.05E-11
	Other PeCDD	0	547	1.39E-01			
	Total PeCDD	8.2 Q,J	580 Q	1.49E-01			
3	1,2,3,4,7,8-HxCDD	50 ND	11 J	< 2.79E-03	0.1	< 2.79E-04	< 6.97E-13
4	1,2,3,6,7,8-HxCDD	50 ND	9.6 J	< 2.43E-03	0.1	< 2.43E-04	< 6.08E-13
5	1,2,3,7,8,9-HxCDD	50 ND	16 J	< 4.06E-03	0.1	< 4.06E-04	< 1.01E-13
	Other HxCDD	0	123.4	3.13E-02			
	Total HxCDD	6.3 Q,J	160 Q	4.22E-02			
6	1,2,3,4,6,7,8-HpCDD	6.7 J	24 B,J	7.79E-03	0.01	7.79E-05	1.94E-1
	Other HpCDD	4.3	20	6.16E-03			
	Total HpCDD	11 J	44 J,B	1.40E-02			
7	OCDD	22 Q,B,J	27 B,J	1.24E-02	0.001	1.24E-05	3.10E-14
Total PCD	Ds(d)	< 51.5	2511	< 6.50E-01		< 1.00E-02	< 2.50E-11
			PCDFs				
8	2,3,7,8-TCDF	2.4 Q,J	230 Q	5.89E-02	0.1	5.89E-03	1.47E-1
	Other TCDF	12.6	5770	1.47E+00			
	Total TCDF	15 Q,J	6000 Q	1.53E+00			
9	1,2,3,7,8-PeCDF	3.3 Q,J	170 Q	4.40E-02	0.05	2.20E-03	5.49E-1:
10	2,3,4,7,8-PeCDF	2.9 Q,J	190	4.89E-02	0.5	2.45E-02	6.11E-1
	Other PeCDF	22.8	2240	5.74E-01			
	Total PeCDF	29 Q	2600 Q	6.67E-01			
11	1,2,3,4,7,8-HxCDF	5.7 Q,J	200 Q	5.22E-02	0.1	5.22E-03	1.30E-1
12	1,2,3,6,7,8-HxCDF	3.7 Q,J	100	2.63E-02	0.1	2.63E-03	6.57E-1:
13	2,3,4,6,7,8-HxCDF	2.7 B,J	47 B,J	1.26E-02	0.1	1.26E-03	3.15E-1:
14	1,2,3,7,8,9-HxCDF	50 ND	5.5 B,J	< 1.40E-03	0.1	< 1.40E-04	< 3.48E-1
	Other HxCDF	0	477.5	1.21E-01			
	Total HxCDF	21 Q,J,B	830 Q,B	2.16E-01			
15	1,2,3,4,6,7,8-HpCDF	8 Q,B,J	150 B	4.01E-02	0.01	4.01E-04	1.00E-1
16	1,2,3,4,7,8,9-HpCDF	50 ND	10 Q,J	< 2.54E-03	0.01	< 2.54E-05	< 6.33E-1
	Other HpCDF	0	40	1.01E-02			
	Total HpCDF	8 Q,B,J	200 B,Q	5.28E-02			
17	OCDF	8.5 Q,B,J	14 B,J	5.71E-03	0.001	5.71E-06	1.43E-1
Total PCD	Fs(e)	< 81.5	9644	< 2.47E+00		< 4.22E-02	< 1.05E-10
							•
Total PCDI		< 133	12155	< 3.12E+00		< 5.23E-02	< 1.30E-1

(a) Stack gas sample volume

139.210 dry standard cubic feet

3.94 dry standard cubic meters

(b) Stack gas flow rate 5,290 dry standard cubic feet per minute

2.50 dry standard cubic meters per second

(c) For non-detects, stack concentrations and emissions are calculated using zero. If the sum of the detection limits of the individual isomers for a given dioxin or furan exceeded the detection limit of the total it was assumed that these individual isomers, when added, constituted the entire total so that any contribution to the total by "other" isomers would be zero.

(d) Total PCDDs = Total TCDD + Total PeCDD + Total HxCDD + Total HpCDD + OCDD

(e) Total PCDFs = Total TCDF + Total PeCDF + Total HxCDF + Total HpCDF + OCDF

Table 7-28. PCDD/PCDF Congener and TEQ Emissions - Run 2

Congener No.	PCDD/PCDF Compound	Analyl Resi (pg/san	alt		ack (a,b,c) ncentration	2,3,7,8- TCDD Toxicity Equivalence		Stack oncentration Toxic Equivalents		Emission Rate as 2,3,7,8- TCDD
		Front Half	Back Half	(ng/dscm)	Factor		(ng/dscm)		(g/s)
1		1	PCDDs							
1	2,3,7,8-TCDD	10 ND	9.2 Q,J	<	2.72E-03	1	<	2.72E-03	<	4.86E-12
	Other TCDD	0	490.8		1.45E-01					
	Total TCDD	10 ND	500 Q	<	1.48E-01					
2	1,2,3,7,8-PeCDD	50 ND	18 J	<	5.33E-03	0.5	<	2.67E-03	<	4.76E-12
	Other PeCDD	0	232		6.87E-02					
	Total PeCDD	1.3 Q,J	250 Q		7.44E-02					
3	1,2,3,4,7,8-HxCDD	50 ND	8.2 J	<	2.43E-03	0.1	<	2.43E-04	<	4.33E-13
4	1,2,3,6,7,8-HxCDD	50 ND	8.5 J	<	2.52E-03	0.1	<	2.52E-04	<	4.49E-13
5	1,2,3,7,8,9-HxCDD	50 ND	13 J	<	3.85E-03	0.1	<	3.85E-04	<	6.87E-13
	Other HxCDD	0	90.3		2.67E-02					
	Total HxCDD	50 ND	120 Q,J	<	3.55E-02					
6	1,2,3,4,6,7,8-HpCDD	50 ND	23 B,J	<	6.81E-03	0.01	<	6.81E-05	<	1.22E-13
	Other HpCDD	0	19		5.63E-03					
	Total HpCDD	2.2 Q.J	42 J,B		1.31E-02					
7	OCDD	17 B,J	24 B,J		1.21E-02	0.001		1.21E-05		2.17E-14
Total PCD	Ds(d)	< 80.5	936	<	2.83E-01		<	6.35E-03	<	1.13E-11
	```		PCDFs							
8	2,3,7,8-TCDF	10 ND	130 Q	<	3.85E-02	0.1	<	3.85E-03	<	6.87E-13
	Other TCDF	0	2970		8.80E-01					
	Total TCDF	10 ND	3100 Q	<	9.18E-01					
9	1,2,3,7,8-PeCDF	50 ND	140	<	4.15E-02	0.05	<	2.07E-03	<	3.70E-12
10	2,3,4,7,8-PeCDF	50 ND	150	<	4.44E-02	0.5	<	2.22E-02	<	3.96E-1
	Other PeCDF	0	1710		5.06E-01					
	Total PeCDF	0.8 Q,J	2000 Q		5.93E-01				T	
11	1,2,3,4,7,8-HxCDF	2.1 Q,J	190		5.69E-02	0.1		5.69E-03		1.02E-1
12	1,2,3,6,7,8-HxCDF	1.6 Q,J	98		2.95E-02	0.1		2.95E-03		5.26E-12
13	2,3,4,6,7,8-HxCDF	50 ND	47 B,J	<	1.39E-02	0.1	<	1.39E-03	<	2.48E-13
14	1,2,3,7,8,9-HxCDF	50 ND	6 Q,B,J	<	1.78E-03	0.1	<	1.78E-04	<	3.17E-10
	Other HxCDF	0	489	<u> </u>	1.45E-01		<u> </u>		Ť	
	Total HxCDF	5.3 J.Q	830 B,Q		2.47E-01				T	
15	1,2,3,4,6,7,8-HpCDF	3.7 Q,B,J	160 B		4.85E-02	0.01		4.85E-04	T	8.65E-13
16	1,2,3,4,7,8,9-HpCDF	50 ND	18 J	<	5.33E-03	0.01	<	5.33E-05	<	9.51E-1
10	Other HpCDF	0	52	Ť	1.54E-02	0.01	È	J.JJE-03	Ť	J.51E-14
	Total HpCDF	3.7 Q,B,J	230 B	$\vdash$	6.92E-02				$\vdash$	
17	OCDF	4.5 Q,B,J	23 B,J	+	8.14E-03	0.001		8.14E-06	1	1.45E-1
Total PCD		< 24.3	ررم دے 6183	<	1.84E+00	0.001	<	3.89E-02	<	6.94E-1
TOTAL F CD	1 0(0)	· 44.0	0100	13	1.046700		_	J.03E-02	12	0.54E*1
Total PCDI	NUCDE	< 104.8	7119	<	2.12E+00		_	4.52E-02	1/	8.07E-1
Total PCDI	J/PCDF	< 104.8	7119	15	∠.1Z⊑#UU		<	4.5ZE-UZ	<	8.U/E-7

(a) Stack gas sample volume

119.220 dry standard cubic feet

(b) Stack gas flow rate

3.38 dry standard cubic meters 3,780 dry standard cubic feet per minute

1.78 dry standard cubic meters per second

(c) For non-detects, stack concentrations and emissions are calculated using zero. If the sum of the detection limits of the individual isomers for a given dioxin or furan exceeded the detection limit of the total it was assumed that these individual isomers, when added, constituted the entire total so that any contribution to the total by "other" isomers would be zero.

(d) Total PCDDs = Total TCDD + Total PeCDD + Total HxCDD + Total HpCDD + OCDD

(e) Total PCDFs = Total TCDF + Total PeCDF + Total HxCDF + Total HpCDF + OCDF

Table 7-29. PCDD/PCDF Congener and TEQ Emissions – Run 3

Congener No.	PCDD/PCDF Compound	Analy Res (pg/sar	ult	Stack (a,b,c) Concentration	2,3,7,8- TCDD Toxicity Equivalence	Stack Concentration Toxic Equivalents	Emission Rate as 2,3,7,8- TCDD	
		Front Half	Back Half	(ng/dscm)	Factor	(ng/dscm)	(g/s)	
		1	PCDDs	1		I	A.	
1	2,3,7,8-TCDD	10 ND	12 Q	< 3.36E-03	1	< 3.36E-03	< 6.40E-12	
	Other TCDD	0	398	1.11E-01				
	Total TCDD	10 ND	410 Q	< 1.15E-01				
2	1,2,3,7,8-PeCDD	50 ND	22 J	< 6.16E-03	0.5	< 3.08E-03	< 5.87E-12	
	Other PeCDD	0	228	6.38E-02				
	Total PeCDD	50 ND	250 Q	< 7.00E-02				
3	1,2,3,4,7,8-HxCDD	50 ND	ل,Q 7.3	< 2.04E-03	0.1	< 2.04E-04	< 3.90E-13	
4	1,2,3,6,7,8-HxCDD	50 ND	9.7 Q.J	< 2.71E-03	0.1	< 2.71E-04	< 5.18E-13	
5	1,2,3,7,8,9-HxCDD	50 ND	16 J	< 4.48E-03	0.1	< 4.48E-04	< 8.54E-13	
	Other HxCDD	0	97	2.71E-02				
	Total HxCDD	50 ND	130 Q,J	< 3.64E-02				
6	1,2,3,4,6,7,8-HpCDD	2.2 J	26 B.J	7.89E-03	0.01	7.89E-05	1.50E-13	
	Other HpCDD	0	24	6.72E-03				
	Total HpCDD	2.2 J	50 J,B	1.46E-02				
7	OCDD	18 B.J	26 B.J	1.23E-02	0.001	1.23E-05	2.35E-14	
Total PCD		< 130.2	866	< 2.48E-01	0.501	< 7.45E-03	< 1.42E-11	
			PCDFs					
8	2,3,7,8-TCDF	10 ND	160 Q	< 4.48E-02	0.1	< 4.48E-03	< 8.54E-12	
	Other TCDF	0	3840	1.07E+00				
	Total TCDF	10 ND	4000 Q	< 1.12E+00				
9	1,2,3,7,8-PeCDF	50 ND	190	< 5.32E-02	0.05	< 2.66E-03	< 5.07E-12	
10	2,3,4,7,8-PeCDF	50 ND	180	< 5.04E-02	0.5	< 2.52E-02	< 4.80E-11	
	Other PeCDF	0	2230	6.24E-01				
	Total PeCDF	2 Q,J	2600	7.28E-01				
11	1,2,3,4,7,8-HxCDF	50 ND	230	< 6.44E-02	0.1	< 6.44E-03	< 1.23E-11	
12	1,2,3,6,7,8-HxCDF	50 ND	130	< 3.64E-02	0.1	< 3.64E-03	< 6.94E-12	
13	2,3,4,6,7,8-HxCDF	50 ND	56 B	< 1.57E-02	0.1	< 1.57E-03	< 2.99E-12	
14	1,2,3,7,8,9-HxCDF	50 ND	8.4 B,J	< 2.35E-03	0.1	< 2.35E-04	< 4.48E-13	
- 14	Other HxCDF	0	675.6	1.89E-01	- 0.1	· 2.55E 64	1 4.40E 13	
	Total HxCDF	50 ND	1100 B	< 3.08E-01	+			
15	1,2,3,4,6,7,8-HpCDF	3.5 Q,B,J	190 B	5.41E-02	0.01	5.41E-04	1.03E-12	
16	1,2,3,4,6,7,6-npcDF 1,2,3,4,7,8,9-HpCDF	50 ND	21 J	< 5.88E-03	0.01	5.41E-04 < 5.88E-05	< 1.12E-13	
10	1,2,3,4,7,6,9-проог Other HpCDF	0 ND	69	1.93E-02	0.01	S.00E-05	1.126-13	
	Total HpCDF	3.5 Q,B,J	280 B	7.93E-02	+			
17	OCDF	3.5 Q,B,J	200 B 22 B,J	7.93E-02 7.11E-03	0.001	7.11E-06	1.36E-14	
Total PCD		3.4 Q,B,J < 68.9	8002	< 2.24E+00	0.001	< 4.48E-02	< 8.54E-11	
TOTAL T CD	1 3(0)	, 00.5	0002	- 2.24L100		1.400-02	1° 0.54E-11	
Total PCDI	D/PCDF	< 199.1	8868	< 2.49E+00	T	< 5.23E-02	< 9.96E-11	
TOTAL ODI	U., UDI	. 100.1	5500	1 2.40E 100	1	J. 0.20L-02	J. 0.00E*11	

(a) Stack gas sample volume

126.180 dry standard cubic feet

(b) Stack gas flow rate

3.57 dry standard cubic meters

4,040 dry standard cubic feet per minute

1.91 dry standard cubic meters per second (c) For non-detects, stack concentrations and emissions are calculated using zero.

If the sum of the detection limits of the individual isomers for a given dioxin or furan exceeded the detection limit of the total it was assumed that these individual isomers, when added, constituted the entire total so that any contribution to the total by "other" isomers would be zero.

(d) Total PCDDs = Total TCDD + Total PeCDD + Total HxCDD + Total HpCDD + OCDD

(e) Total PCDFs = Total TCDF + Total PeCDF + Total HxCDF + Total HpCDF + OCDF

Revision: 0

Date: 06/30/06

Table 7-30. PAH Compound Emissions - Run 1

PAH Compound	Front Half Analytical Result (ng/sample)	Back Half Analytical Result (ng/sample)	Condensate Analytical Result (ng/sample)	Co	ack (a,b,c) ncentration ug/dscm)		Emission Rate (g/s)			
Standard Target Analytes										
Acenaphthene	3.4 BJ	3.5 BJ	1.5 J		2.29E-03		5.51E-09			
Acenaphthylene	9.1 J	14 J	0.29 ND	<	6.39E-03	<	1.53E-08			
Anthracene	4 J	28	7.8 J		1.09E-02		2.61E-08			
Benzo(a)anthracene	1.7 BJ	5.4 J	0.48 ND	<	2.07E-03	<	4.97E-09			
Benzo(b)fluoranthene	4.2 BJ	40 B	5.8 J		1.37E-02		3.28E-08			
Benzo(k)fluoranthene	3.1 BJ	4.3 J	5.5 J		3.52E-03		8.46E-09			
Benzo(g,h,i)perylene	5.6 J	4 J	15 BJ		6.72E-03		1.61E-08			
Benzo(a)pyrene	2.7 BJ	2.2 BJ	3.4 BJ		2.27E-03		5.45E-09			
Benzo(e)pyrene	4.5 BJ	4.4 BJ	5.1 BJ		3.82E-03		9.18E-09			
Chrysene	3.5 BJ	18 J	4.7 BJ		7.15E-03		1.72E-08			
Dibenzo(a,h)anthracene	0.32 ND	0.5 ND	0.65 ND	<	4.01E-04	<	9.64E-10			
Fluoranthene	27 B	100 B	26 B		4.18E-02		1.00E-07			
Fluorene	15 BJ	11 BJ	3.3 J		8.00E-03		1.92E-08			
Indeno(1,2,3-cd)pyrene	3.3 BJ	3.8 J	4.7 BJ		3.22E-03		7.74E-09			
2-Methylnaphthalene	31 BJ	80 BJ	13 BJ		3.39E-02		8.13E-08			
Naphthalene	40 BJ	880 B	30 BJ		2.59E-01		6.23E-07			
Phenanthrene	140 B	300 B	39 BJ		1.31E-01		3.14E-07			
Pyrene	25 BJ	110 B	20 BJ		4.23E-02		1.02E-07			
Special Target Analytes										
Perylene	0.91 ND	3.5 BJ	1.7 ND	<	1.67E-03	<	4.01E-09			
Total PAHs	< 324.33	1612.6	187.92	<	5.80E-01	<	1.39E-06			

(b) Stack gas flow rate

129.310 dry standard cubic feet

3.66 dry standard cubic meters

5,090 dry standard cubic feet per minute

2.40 dry standard cubic meters per second

⁽a) Stack gas sample volume

Table 7-31. PAH Compound Emissions - Run 2

PAH Compound	Front Half Analytical Result (ng/sample)	Back Half Analytical Result (ng/sample)	Condensate Analytical Result (ng/sample)	C	tack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)
Standard Target Analytes							
Acenaphthene	1.1 BJ	3.3 BJ	1.5 J		1.67E-03		3.05E-09
Acenaphthylene	0.28 ND	7.8 J	0.23 ND	<	2.35E-03	<	4.29E-09
Anthracene	0.44 ND	8.1 J	3.5 J	<	3.41E-03	<	6.22E-09
Benzo(a)anthracene	0.36 ND	0.35 ND	0.45 ND	<	3.28E-04	<	5.99E-10
Benzo(b)fluoranthene	0.83 ND	55 B	3.9 J	<	1.69E-02	<	3.09E-08
Benzo(k)fluoranthene	1.1 ND	4.6 J	1.2 ND	<	1.95E-03	<	3.57E-09
Benzo(g,h,i)perylene	0.75 ND	4.4 J	18 BJ	<	6.55E-03	<	1.20E-08
Benzo(a)pyrene	1.4 ND	1.7 ND	2.7 BJ	<	1.64E-03	<	3.00E-09
Benzo(e)pyrene	1.1 ND	1.5 ND	5.3 BJ	<	2.23E-03	<	4.08E-09
Chrysene	0.39 ND	21	3.1 BJ	<	6.93E-03	<	1.27E-08
Dibenzo(a,h)anthracene	0.41 ND	0.92 ND	0.45 ND	<	5.04E-04	<	9.20E-10
Fluoranthene	4.4 BJ	32 B	18 BJ		1.54E-02		2.81E-08
Fluorene	3.3 BJ	10 BJ	2.8 J		4.55E-03		8.32E-09
Indeno(1,2,3-cd)pyrene	0.76 ND	1.4 ND	5.3 BJ	<	2.11E-03	<	3.86E-09
2-Methylnaphthalene	12 BJ	52 BJ	13 BJ		2.18E-02		3.98E-08
Naphthalene	23 BJ	1900 B	34 BJ		5.54E-01		1.01E-06
Phenanthrene	25 BJ	96 B	27 BJ		4.19E-02		7.65E-08
Pyrene	6.4 BJ	30 BJ	15 BJ		1.45E-02		2.66E-08
Special Target Analytes							
Perylene	1.4 ND	1.6 ND	1.3 ND	<	1.22E-03	<	2.22E-09
Total PAHs	< 84.42	2231.67	156.73		7.00E-01		1.28E-0

(b) Stack gas flow rate

124.810 dry standard cubic feet

3.53 dry standard cubic meters

3,870 dry standard cubic feet per minute

1.83 dry standard cubic meters per second

⁽a) Stack gas sample volume

Table 7-32. PAH Compound Emissions – Run 3

PAH Compound	Front Half Analytical Result (ng/sample)	Back Half Analytical Result (ng/sample)	Condensate Analytical Result (ng/sample)		Stack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)
Standard Target Analytes							
Acenaphthene	2 BJ	6.5 BJ	1.3 ND	<	2.87E-03	<	5.22E-09
Acenaphthγlene	3.3 J	5.9 J	0.32 ND	<	2.79E-03	<	5.07E-09
Anthracene	0.37 ND	11 J	0.41 ND	<	3.45E-03	<	6.27E-09
Benzo(a)anthracene	0.21 ND	6.1 J	0.37 ND	<	1.96E-03	<	3.56E-09
Benzo(b)fluoranthene	4.1 BJ	40 B	2.3 J		1.36E-02		2.47E-08
Benzo(k)fluoranthene	1.1 ND	3.9 J	4.7 J	<	2.84E-03	<	5.16E-09
Benzo(g,h,i)perylene	7.5 J	3.7 J	0.67 ND	<	3.48E-03	<	6.32E-09
Benzo(a)pyrene	4.3 BJ	1.1 ND	1.9 ND	<	2.14E-03	<	3.89E-09
Benzo(e)pyrene	3.2 BJ	2.5 BJ	1.6 ND	<	2.14E-03	<	3.89E-09
Chrysene	0.23 ND	5.7 J	0.43 ND	<	1.86E-03	<	3.39E-09
Dibenzo(a,h)anthracene	0.35 ND	0.72 ND	0.65 ND	<	5.04E-04	<	9.16E-10
Fluoranthene	7.3 BJ	25 B	3.4 BJ		1.05E-02		1.90E-08
Fluorene	6.4 BJ	11 BJ	1.8 J		5.63E-03		1.02E-08
Indeno(1,2,3-cd)pyrene	4.1 BJ	3.1 J	0.68 J		2.31E-03		4.20E-09
2-Methylnaphthalene	17 BJ	67 BJ	15 BJ		2.90E-02		5.27E-08
Naphthalene	35 BJ	17000 B	72 BJ		5.01E+00		9.11E-06
Phenanthrene	49 B	65 B	5.8 BJ		3.51E-02		6.38E-08
Pyrene	5 BJ	28 BJ	3.1 BJ		1.06E-02		1.92E-08
Special Target Analytes							
Perylene	1.1 ND	66 B	1.8 ND	<	2.02E-02	<	3.67E-08
Total PAHs	< 151.56	17352.22	118.23	<	5.16E+00	<	9.38E-06

(b) Stack gas flow rate

120.520 dry standard cubic feet

3.41 dry standard cubic meters

3,850 dry standard cubic feet per minute

1.82 dry standard cubic meters per second

⁽a) Stack gas sample volume

Table 7-33. PCB Emissions - Run 1

PCB Compound	Front Half Analytical Result (ng/sample)	Back Half Analytical Result (ng/sample)	Condensate Analytical Result (ng/sample)	Stack (a,h,c) Concentration (ng/dscm)	Emission Rate (g/s)
Co-Planar PCBs					
3,4,3',4'-Tetrachlorobiphenyl (IUPAC 77)	0.03 QB	0.36	0.021 QJ	1.12E-01	2.70E-10
3,4,4',5-Tetrachlorobiphenyl (IUPAC 81)	0.0083 ND	0.06 QJ	0.01 ND	< 2.14E-02	< 5.14E-11
2,3,4,3',4'-Pentachlorobiphenyl (IUPAC 105)	0.022 QJ	0.067 J	0.035 BJ	3.39E-02	8.13E-11
2,3,4,5,4'-Pentachlorobiphenyl (IUPAC 114)	0.0069 ND	0.011 ND	0.0065 ND	< 6.66E-03	< 1.60E-11
2,4,5,3',4'-Pentachlorobiphenyl (IUPAC 118)	0.087 J	0.13 J	0.078 QBJ	8.06E-02	1.94E-10
3,4,5,2',4'-Pentachlorobiphenyl (IUPAC 123)	0.0075 ND	0.022 J	0.0067 ND	< 9.88E-03	< 2.37E-11
3,4,5,3',4'-Pentachlorobiphenyl (IUPAC 126)	0.0073 ND	0.091 QJ	0.0072 ND	< 2.88E-02	< 6.92E-11
2,3,4,5,3',4'-Hexachlorobiphenyl (IUPAC 156)	0.01 ND	0.061 QCJ	0.013 ND	< 2.29E-02	< 5.51E-11
2,3,4,3',4',5'-Hexachlorobiphenyl (IUPAC 157)	0.01 ND	0.061 QCJ	0.013 ND	< 2.29E-02	< 5.51E-11
2,4,5,3',4',5'-Hexachlorobiphenyl (IUPAC 167)	0.0073 ND	0.027 J	0.0091 ND	< 1.19E-02	< 2.85E-11
3,4,5,3',4',5'-Hexachlorobiphenyl (IUPAC 169)	0.0073 ND	0.02 ND	0.0098 ND	< 1.01E-02	< 2.43E-11
2,3,4,5,3',4',5'-Heptachlorobiphenyl (IUPAC 189)	0.0066 ND	0.013 ND	0.0061 ND	< 7.02E-03	< 1.69E-11
Total PCB Homologs					
Total Monochlorobiphenyls	0.67 B	6 B	0.23 BJ	1.88E+00	4.53E-09
Total Dichlorobiphenyls	9.6 QB	9.8 QB	2 BQ	5.84E+00	1.40E-08
Total Trichlorobiphenyls	11 QB	8 QB	3.8 BQ	6.23E+00	1.50E-08
Total Tetrachlorobiphenyls	2.2 QB	4 BQ	2.5 BQ	2.38E+00	5.71E-09
Total Pentachlorobiphenyls	0.49 QJB	1 QB	0.75 JQB	6.12E-01	1.47E-09
Total Hexachlorobiphenyls	0.093 QJ	0.33 QBJ	0.23 QBJ	1.78E-01	4.28E-10
Total Heptachlorobiphenyls	0.21 ND	0.13 QJ	0.024 QBJ	< 9.94E-02	< 2.39E-10
Total Octachlorobiphenyls	0.1 ND	0.16 ND	0.14 ND	< 1.09E-01	< 2.62E-10
Total Nonachlorobiphenyls	0.029 ND	0.054 ND	0.05 ND	< 3.63E-02	< 8.73E-11
Total Decachlorobiphenyl	0.0096 ND	0.016 ND	0.025 ND	< 1.38E-02	< 3.32E-11
	•	•		•	
Total PCBs	< 24.4016	29.49	9.749	< 1.74E+01	< 4.18E-08

(b) Stack gas flow rate

129.310 dry standard cubic feet

3.66 dry standard cubic meters

5,090 dry standard cubic feet per minute

2.40 dry standard cubic meters per second

⁽a) Stack gas sample volume

Table 7-34. PCB Emissions - Run 2

PCB Compound	Front Half Analytical Result (ng/sample)	Back Half Analytical Result (ng/sample)	Condensate Analytical Result (ng/sample)	Stack (a,b,c) Concentration (ng/dscm)	Emission Rate (g/s)
Co-Planar PCBs					
3,4,3',4'-Tetrachlorobiphenyl (IUPAC 77)	0.0073 ND	0.17 J	0.018 QJ	< 5.53E-02	< 1.01E-10
3,4,4',5-Tetrachlorobiphenyl (IUPAC 81)	0.0068 ND	0.019 QJ	0.0058 ND	< 8.94E-03	< 1.63E-11
2,3,4,3',4'-Pentachlorobiphenyl (IUPAC 105)	0.0061 ND	0.049 QJ	0.039 BJ	< 2.66E-02	< 4.86E-11
2,3,4,5,4'-Pentachlorobiphenyl (IUPAC 114)	0.0058 ND	0.01 ND	0.0075 QJ	< 6.59E-03	< 1.20E-11
2,4,5,3',4'-Pentachlorobiphenyl (IUPAC 118)	0.018 QJ	0.097 QJ	0.076 BJ	5.40E-02	9.87E-11
3,4,5,2',4'-Pentachlorobiphenyl (IUPAC 123)	0.0063 ND	0.01 ND	0.0036 ND	< 5.63E-03	< 1.03E-11
3,4,5,3',4'-Pentachlorobiphenyl (IUPAC 126)	0.0062 ND	0.069 J	0.0041 ND	< 2.24E-02	< 4.10E-11
2,3,4,5,3',4'-Hexachlorobiphenyl (IUPAC 156)	0.0091 ND	0.048 CJ	0.0069 ND	< 1.81E-02	< 3.31E-11
2,3,4,3',4',5'-Hexachlorobiphenyl (IUPAC 157)	0.0091 ND	0.048 CJ	0.0069 ND	< 1.81E-02	< 3.31E-11
2,4,5,3',4',5'-Hexachlorobiphenyl (IUPAC 167)	0.0063 ND	0.024 J	0.0049 ND	< 9.96E-03	< 1.82E-11
3,4,5,3',4',5'-Hexachlorobiphenyl (IUPAC 169)	0.0062 ND	0.019 ND	0.006 ND	< 8.83E-03	< 1.61E-11
2,3,4,5,3',4',5'-Heptachlorobiphenyl (IUPAC 189)	0.006 ND	0.011 ND	0.0034 ND	< 5.77E-03	< 1.05E-11
Total PCB Homologs			•		•
Total Monochlorobiphenyls	0.061 QBJ	1.2 B	0.24 BJ	4.25E-01	7.76E-10
Total Dichlorobiphenyls	1.5 QB	6.4 QB	1.6 QB	2.69E+00	4.91E-09
Total Trichlorobiphenyls	1.6 BJQ	5.5 QB	2.9 BQ	2.83E+00	5.17E-09
Total Tetrachlorobiphenyls	0.38 QJB	2.8 BQ	2.1 BQ	1.49E+00	2.73E-09
Total Pentachlorobiphenyls	0.03 QJ	0.74 JQB	0.74 JQB	4.27E-01	7.80E-10
Total Hexachlorobiphenyls	0.028 QJ	0.43 BJQ	0.27 BJQ	2.06E-01	3.76E-10
Total Heptachlorobiphenyls	0.19 ND	0.16 QJ	0.03 JQB	< 1.08E-01	< 1.96E-10
Total Octachlorobiphenyls	0.089 ND	0.014 QJ	0.0099 QJ	< 3.19E-02	< 5.83E-11
Total Nonachlorobiphenyls	0.028 ND	0.039 ND	0.027 ND	< 2.66E-02	< 4.86E-11
Total Decachlorobiphenyl	0.0082 ND	0.02 QJ	0.011 ND	< 1.11E-02	< 2.03E-11
Total PCBs	< 3.9142	17.303	7.9279	< 8.25E+00	< 1.51E-08

(b) Stack gas flow rate

124.810 dry standard cubic feet

3.53 dry standard cubic meters

3,870 dry standard cubic feet per minute

1.83 dry standard cubic meters per second

⁽a) Stack gas sample volume

Table 7-35. PCB Emissions - Run 3

PCB Compound	Front Half Analytical Result (ng/sample)	Back Half Analytical Result (ng/sample)	Condensate Analytical Result (ng/sample)	Stack (a,h,c) Concentration (ng/dscm)	Emission Rate (g/s)
Co-Planar PCBs					
3,4,3',4'-Tetrachlorobiphenyl (IUPAC 77)	0.017 QJ	0.12 QJ	0.0071 ND	< 4.22E-02	< 7.67E-11
3,4,4',5-Tetrachlorobiphenyl (IUPAC 81)	0.0079 ND	0.061 ND	0.0064 ND	< 2.21E-02	< 4.01E-11
2,3,4,3',4'-Pentachlorobiphenyl (IUPAC 105)	0.0069 ND	0.093 J	0.017 QBJ	< 3.42E-02	< 6.22E-11
2,3,4,5,4'-Pentachlorobiphenyl (IUPAC 114)	0.0066 ND	0.012 ND	0.0081 QJ	< 7.82E-03	< 1.42E-11
2,4,5,3',4'-Pentachlorobiphenyl (IUPAC 118)	0.031 J	0.16 J	0.023 QBJ	6.27E-02	1.14E-10
3,4,5,2',4'-Pentachlorobiphenyl (IUPAC 123)	0.0069 ND	0.012 ND	0.017 QBJ	< 1.05E-02	< 1.91E-11
3,4,5,3',4'-Pentachlorobiphenyl (IUPAC 126)	0.0074 ND	0.043 QJ	0.0053 ND	< 1.63E-02	< 2.97E-11
2,3,4,5,3',4'-Hexachlorobiphenyl (IUPAC 156)	0.0091 ND	0.056 CJ	0.012 QCJ	< 2.26E-02	< 4.10E-11
2,3,4,3',4',5'-Hexachlorobiphenyl (IUPAC 157)	0.0091 ND	0.056 CJ	0.012 QCJ	< 2.26E-02	< 4.10E-11
2,4,5,3',4',5'-Hexachlorobiphenyl (IUPAC 167)	0.0067 ND	0.021 QJ	0.0058 ND	< 9.81E-03	< 1.78E-11
3,4,5,3',4',5'-Hexachlorobiphenyl (IUPAC 169)	0.0078 ND	0.021 ND	0.0083 ND	< 1.09E-02	< 1.98E-11
2,3,4,5,3',4',5'-Heptachlorobiphenyl (IUPAC 189)	0.0065 ND	0.013 ND	0.0045 ND	< 7.03E-03	< 1.28E-11
Total PCB Homologs			•		•
Total Monochlorobiphenyls	0.18 QBJ	0.91 B	0.19 BJ	3.75E-01	6.81E-10
Total Dichlorobiphenyls	2.6 BQ	4.9 QB	0.68 QBJ	2.40E+00	4.36E-09
Total Trichlorobiphenyls	2.6 BQ	6.1 BQ	0.88 QBJ	2.81E+00	5.10E-09
Total Tetrachlorobiphenyls	0.51 QBJ	2.9 BQ	0.73 JQB	1.21E+00	2.20E-09
Total Pentachlorobiphenyls	0.058 QJ	0.95 JQB	0.28 QJB	3.77E-01	6.86E-10
Total Hexachlorobiphenyls	0.047 JQ	0.47 QBJ	0.1 QBJ	1.81E-01	3.29E-10
Total Heptachlorobiphenyls	0.2 ND	0.15 QJ	0.21 ND	< 1.64E-01	< 2.98E-10
Total Octachlorobiphenyls	0.094 ND	0.15 ND	0.1 ND	< 1.01E-01	< 1.83E-10
Total Nonachlorobiphenyls	0.03 ND	0.052 ND	0.032 ND	< 3.34E-02	< 6.07E-11
Total Decachlorobiphenyl	0.0086 ND	0.015 ND	0.013 ND	< 1.07E-02	< 1.95E-11
Total PCBs	< 6.3276	16.597	3.215	< 7.66E+00	< 1.39E-08

(b) Stack gas flow rate

120.520 dry standard cubic feet

3.41 dry standard cubic neters

3,850 dry standard cubic feet per minute

1.82 dry standard cubic meters per second

⁽a) Stack gas sample volume

Table 7-36. Organochlorine Pesticide Emissions - Run 1

OCP Compound	Front Half Analytical Result (ug/sample)	Back Half Analytical Result (ug/sample)	Condensate Analytical Result (ug/sample)		Stack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)
Standard Target Analytes				.,			
Aldrin	0.036 ND	0.014 ND	0.034 ND	<	2.41E-02	<	5.54E-08
a-BHC	0.026 ND	0.022 ND	0.016 ND	<	1.84E-02	<	4.22E-08
b-BHC	0.033 ND	0.063 ND	0.034 ND	<	3.73E-02	<	8.58E-08
g-BHC (Lindane)	0.014 ND	0.014 ND	0.012 ND	<	1.15E-02	<	2.64E-08
d-BHC	0.015 ND	0.022 J,COL	0.025 ND	<	1.78E-02	<	4.09E-08
a-Chlordane	0.013 ND	0.021 J,COL	0.014 ND	<	1.38E-02	<	3.17E-08
g-Chlordane	0.078 ND	0.043 ND	0.018 ND	<	3.99E-02	<	9.17E-08
4,4'-DDD	0.083 ND	0.093 ND	0.14 ND	<	9.07E-02	<	2.09E-07
4,4'-DDE	0.039 ND	0.052 J	0.028 ND	<	3.42E-02	<	7.85E-08
4,4'-DDT	0.023 ND	0.063 J,COL	0.026 J	<	3.22E-02	<	7.39E-08
Dieldrin	0.013 ND	0.015 ND	0.012 ND	<	1.15E-02	<	2.64E-08
Endosulfan I	0.013 ND	0.018 ND	0.014 ND	<	1.29E-02	<	2.97E-08
Endosulfan II	0.014 ND	0.06 J,COL	0.018 ND	<	2.64E-02	<	6.07E-08
Endosulfan sulfate	0.023 ND	0.013 ND	0.016 ND	<	1.49E-02	<	3.43E-08
Endrin	0.05 ND	0.063 ND	0.051 ND	<	4.71E-02	<	1.08E-07
Heptachlor	0.016 ND	0.013 ND	0.02 J,COL	<	1.41E-02	<	3.23E-08
Methoxychlor	0.038 ND	0.11 ND	0.037 ND	<	5.31E-02	<	1.22E-07
Special Target Analytes	_						
Chlorobenzilate	0.083 ND	0.093 ND	0.15 J,COL	<	9.36E-02	<	2.15E-07
Endrin aldehyde	0.018 ND	0.04 ND	0.02 J,B,COL	. <	2.24E-02	<	5.15E-08
Endrin ketone	0.017 ND	0.017 ND	0.025 ND	<	1.69E-02	<	3.89E-08
Heptachlor epoxide	0.015 ND	0.042 J,COL	0.012 ND	<	1.98E-02	<	4.55E-08
Diallate	11 ND	9.7 ND	0.78 ND	<	6.17E+00	<	1.42E-05

(a) Stack gas sample volume

122.990 dry standard cubic feet

3.48 dry standard cubic meters

(b) Stack gas flow rate 4,870 dry standard cubic feet per minute

2.30 dry standard cubic meters per second

Table 7-37. Organochlorine Pesticide Emissions – Run 2

OCP Compound	Front Half Analytical Result (ug/sample)	Back Half Analytical Result (ug/sample)	Condensate Analytical Result (ug/sample)	4	Stack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)				
Standard Target Analytes											
Aldrin	0.036 ND	0.014 ND	0.034 ND	<	2.52E-02	<	4.62E-08				
a-BHC	0.026 ND	0.022 ND	0.023 J	<	2.13E-02	<	3.91E-08				
b-BHC	0.033 ND	0.063 ND	0.052 J,COL	<	4.45E-02	<	8.14E-08				
g-BHC (Lindane)	0.014 ND	0.014 ND	0.012 ND	<	1.20E-02	<	2.20E-08				
d-BHC	0.015 ND	0.019 ND	0.11 COL	<	4.33E-02	<	7.92E-08				
a-Chlordane	0.013 ND	0.028 J,COL	0.014 ND	<	1.65E-02	<	3.03E-08				
g-Chlordane	0.078 ND	0.043 ND	0.018 ND	<	4.18E-02	<	7.65E-08				
4,4'-DDD	0.083 ND	0.093 ND	0.14 ND	<	9.49E-02	<	1.74E-07				
4,4'-DDE	0.039 ND	0.052 J	0.028 ND	<	3.57E-02	<	6.55E-08				
4,4'-DDT	0.023 ND	0.012 ND	0.022 ND	<	1.71E-02	<	3.14E-08				
Dieldrin	0.013 ND	0.015 ND	0.012 ND	<	1.20E-02	<	2.20E-08				
Endosulfan I	0.013 ND	0.018 ND	0.014 ND	<	1.35E-02	<	2.48E-08				
Endosulfan II	0.014 ND	0.023 ND	0.018 ND	<	1.65E-02	<	3.03E-08				
Endosulfan sulfate	0.023 ND	0.013 ND	0.016 ND	<	1.56E-02	<	2.86E-08				
Endrin	0.05 ND	0.063 ND	0.051 ND	<	4.93E-02	<	9.02E-08				
Heptachlor	0.016 ND	0.013 ND	0.11 COL	<	4.18E-02	<	7.65E-08				
Methoxychlor	0.038 ND	0.11 ND	0.035 ND	<	5.50E-02	<	1.01E-07				
Special Target Analytes											
Chlorobenzilate	0.083 ND	0.093 ND	0.13 ND	<	9.19E-02	<	1.68E-07				
Endrin aldehyde	0.018 ND	0.04 ND	0.18 B,COL	<	7.15E-02	<	1.31E-07				
Endrin ketone	0.017 ND	0.017 ND	0.025 ND	<	1.77E-02	<	3.25E-08				
Heptachlor epoxide	0.015 ND	0.015 ND	0.025 J,COL	<	1.65E-02	<	3.03E-08				
Diallate	11 ND	9.7 ND	0.78 ND	<	6.45E+00	<	1.18E-05				

(b) Stack gas flow rate

117.540 dry standard cubic feet

3.33 dry standard cubic meters

3,880 dry standard cubic feet per minute

1.83 dry standard cubic meters per second

⁽a) Stack gas sample volume

Table 7-38. Organochlorine Pesticide Emissions – Run 3

OCP Compound	Front Half Analytical Result (ug/sample)	Back Half Analytical Result (ug/sample)	Condensate Analytical Result (ug/sample)		stack (a,b,c) oncentration (ug/dscm)		Emission Rate (g/s)				
Standard Target Analytes											
Aldrin	0.036 ND	0.014 ND	0.034 ND	<	2.36E-02	<	4.54E-08				
a-BHC	0.026 ND	0.022 ND	0.016 ND	<	1.80E-02	<	3.46E-08				
b-BHC	0.033 ND	0.074 J,COL	0.035 J,COL	<	3.99E-02	<	7.68E-08				
g-BHC (Lindane)	0.014 ND	0.014 ND	0.012 ND	<	1.12E-02	<	2.16E-08				
d-BHC	0.015 ND	0.019 ND	0.078 J,COL	<	3.15E-02	<	6.06E-08				
a-Chlordane	0.013 ND	0.016 ND	0.014 ND	<	1.21E-02	<	2.33E-08				
g-Chlordane	0.078 ND	0.043 ND	0.018 ND	<	3.90E-02	<	7.52E-08				
4,4'-DDD	0.083 ND	0.26 J,COL	0.14 ND	<	1.36E-01	<	2.61E-07				
4,4'-DDE	0.039 ND	0.047 ND	0.028 ND	<	3.20E-02	<	6.17E-08				
4,4'-DDT	0.023 ND	0.021 ND	0.023 ND	<	1.88E-02	<	3.62E-08				
Dieldrin	0.013 ND	0.015 ND	0.012 ND	<	1.12E-02	<	2.16E-08				
Endosulfan I	0.013 ND	0.018 ND	0.014 ND	<	1.26E-02	<	2.43E-08				
Endosulfan II	0.014 ND	0.023 ND	0.018 ND	<	1.54E-02	<	2.98E-08				
Endosulfan sulfate	0.023 ND	0.013 ND	0.016 ND	<	1.46E-02	<	2.81E-08				
Endrin	0.05 ND	0.063 ND	0.051 ND	<	4.61E-02	<	8.87E-08				
Heptachlor	0.016 ND	0.013 ND	0.056 J,COL	<	2.39E-02	<	4.60E-08				
Methoxychlor	0.038 ND	0.11 ND	0.037 ND	<	5.20E-02	<	1.00E-07				
Special Target Analytes											
Chlorobenzilate	0.083 ND	0.097 J,COL	0.14 ND	<	8.99E-02	<	1.73E-07				
Endrin aldehyde	0.018 ND	0.04 ND	0.022 J,B,COL	. <	2.25E-02	<	4.33E-08				
Endrin ketone	0.017 ND	0.017 ND	0.025 ND	<	1.66E-02	<	3.19E-08				
Heptachlor epoxide	0.015 ND	0.015 ND	0.013 J,COL	<	1.21E-02	<	2.33E-08				
Diallate	11 ND	9.7 ND	0.78 ND	<	6.03E+00	<	1.16E-05				

(a) Stack gas sample volume

(b) Stack gas flow rate

125.710 dry standard cubic feet

3.56 dry standard cubic meters

4,080 dry standard cubic feet per minute

1.93 dry standard cubic meters per second (c) For non-detects, stack concentrations and emissions are calculated using the detection limit.

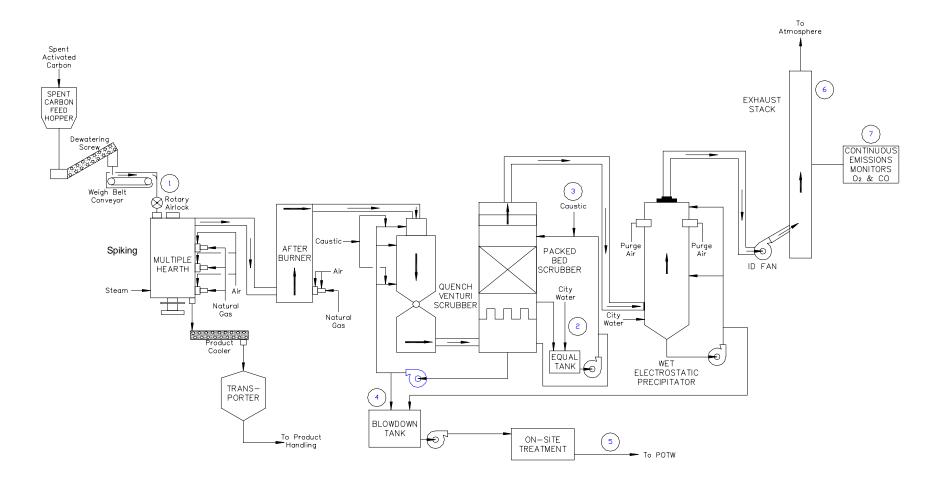



Figure 2-1. Sampling Locations.

Westates PDT Report Rev 0.doc

Revision: 0

Date: 06/30/06